Top JOSE


Bezpieczeństwo Pracy
 
Produkty i Usługi
 
Maksymalizuj
Minimalizuj

 


PODSTAWY I METODY OCENY ŚRODOWISKA PRACY

PIMOŚP - NUMER 4 (98) 2018




  • 2,2-Bis(4-hydroksyfenylo)propan – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Jan Gromiec, s. 5-41
  • Buta-1,3-dien. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Anna Kilanowicz, Krystyna Sitarek, Małgorzata Skrzypińska-Gawrysiak, s. 43-85
  • Fenoloftaleina – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Katarzyna Konieczko, s. 87-109
  • Fenylohydrazyna i jej sole – w przeliczeniu na fenylohydrazynę. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Anna Kilanowicz, Małgorzata Skrzypińska-Gawrysiak, s. 111-145
  • Trimetyloamina. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Agnieszka Jankowska, Sławomir Czerczak, s. 147-165
  • Srebro – związki rozpuszczalne. Metoda oznaczania w powietrzu na stanowiskach pracy
    Jolanta Surgiewicz, s. 167-177
  • 2,2-Bis(4-hydroksyfenylo)propan – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Jan Gromiec

    2,2-Bis(4-hydroksyfenylo)propan (bisfenol A) jest ciałem stałym, występującym w postaci białych płatków lub kryształków. Stosowany jest głównie do produkcji żywic epoksydowych. Szacuje się, że do tego celu wykorzystywane jest 95% wyprodukowanego związku. Bisfenol A znajduje ponadto zastosowanie w produkcji: tworzyw poliwęglanowych, nienasyconych żywic poliestrowych, polisulfonowych i akrylowych oraz środków zmniejszających palność. Tworzywa poliwęglanowe używane są do produkcji emulsji, do tzw. papieru termicznego, wykorzystywanego w drukarkach termicznych (do drukowania różnego rodzaju: paragonów, biletów, faksów czy nalepek).

    Przy produkcji i stosowaniu 2,2-bis(4-hydroksyfenylo) propanu głównymi drogami narażenia zawodowego są układ oddechowy i skóra.

    Liczba osób narażonych zawodowo na 2,2-bis(4-hydroksyfenylo)propan nie jest znana, lecz ze względu na dość duże rozpowszechnienie żywic poliwęglanowych i epoksydowych narażenie może być liczone w tysiącach zatrudnionych. Ze względu na śladowe ilości pozostałości 2,2-bis(4-hydroksyfenylo)propanu w większości żywic, poziomy narażenia są zwykle minimalne.

    W Polsce 2,2-bis(4-hydroksyfenylo)propan stosuje się głównie jako: składnik kleju do elementów elektronicznych, stabilizator stosowany jako dodatek do PCV, dodatek do żywic epoksydowych czy składnik płynów hamulcowych. W 2010 r. tylko 4 osoby były zatrudnionena stanowiskach pracy, gdzie występowało narażeniena pyły 2,2-bis(4-hydroksyfenylo)propanu o stężeniach większych od obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS), (tj. 5 mg/m3), z czego 2 osoby pracowały w dziale „Uprawy rolne, chów i hodowla zwierząt, łowiectwo, włączając działalność usługową”, a 2 – w transporcie wodnym. W 2013 r. nie odnotowano osób pracujących w warunkach narażenia na bisfenol A przekraczających wartość NDS.

    Dla szczurów i myszy wartości LD50 przy podaniu drogą pokarmową a także – dla królika – drogą dermalną, wynoszą powyżej 2 000 mg/kg mc.

    2,2-Bis(4-hydroksyfenylo)propan sklasyfikowano jako substancję mogącą działać szkodliwie na płodność (Repr. Kat. 1B, H360F) oraz powodującą poważne uszkodzenie oczu (H318) i podrażnienie dróg oddechowych (H355).

    U pracowników mających podczas pracy kontakt z 2,2-bis(4-hydroksyfenylo)propanem występowały podrażnienia: oczu, skóry i dróg oddechowych.

    Na podstawie wyników doświadczeń przeprowadzonych na zwierzętach jednoznacznie wykazano, że 2,2-bis-(4-hydroksyfenylo)propan nie powodował podrażnień skóry, ale działał drażniąco na oczy. U szczurów narażanych inhalacyjnie na pył 2,2-bis(4-hydroksyfenylo)propanu obserwowano nieznaczne i odwracalne uszkodzenia nabłonka przewodu nosowego, co świadczy o podrażnieniu dróg oddechowych.

    W naskórkowych testach płatkowych u ludzi 2,2-bis(4-hydroksyfenylo)propan powodował stany zapalne skóry. Nie jest jednak jasne, czy przyczyną był bisfenol A, czy pokrewne żywice epoksydowe. Brak jest wyników badań działania uczulającego na zwierzętach, przeprowadzonych zgodnie z aktualnie obowiązującymi standardami.

    Toksyczność bisfenolu A była badana na kilku gatunkach zwierząt – na: myszach, szczurach i psach. U zwierząt podanie dożołądkowe 2,2-bis(4-hydroksyfenylo)propanu powodowało przede wszystkim: zahamowanie przyrostu masy ciała, zwiększenie masy wątroby, zaburzenia oddychania, odwodnienie, biegunki i padnięcie. Z badań toksyczności przewlekłej przy podaniu związku drogą pokarmową wynika, że narządami docelowymi działania są wątroba i nerki.

    Brak jest danych dotyczących mutagennego działania bisfenolu A w testach przeprowadzonych w warunkach in vivo. Działania takiego nie obserwowano w kilku testach w warunkach in vitro z zastosowaniem komórek ssaków i bakterii. W badaniach tych wykazano, że 2,2-bis(4-hydroksyfenylo) propan nie indukował mutacji genowych, nie powodował też zmian genów w drożdżach. Ujemne wyniki uzyskano także w testach oceniających aberracje chromosomowe i w testach wymiany chromatyd siostrzanych przeprowadzonych na komórkach ssaków.

    W dostępnym piśmiennictwie i bazach danych nie znaleziono informacji na temat rakotwórczego działania bisfenolu A na ludzi. Na podstawie danych z doświadczenia przeprowadzonego na myszach i szczurach obu płci wykazano, że narażenie trwające 103 tygodnie nie spowodowało żadnych zmian świadczących o działaniu rakotwórczym związku.

    Na podstawie wyników niektórych badań wykazano negatywny wpływ 2,2-bis(4-hydroksyfenylo)propanu na rozrodczość. Jest to związane z mechanizmem jego działania, albowiem na podstawie wyników badań przeprowadzonych w warunkach in vitro stwierdzono, że bisfenol A łączy się z receptorami estrogenowymi. Jednak dane dotyczące działania embriotoksycznego związku i jego wpływu na rozrodczość nie są jednoznaczne. Wątpliwości i sprzeczności w doniesieniach na temat wpływu 2,2-bis(4-hydroksyfenylo)propanu na rozrodczość i rozwój, a także niespójność danych uzyskanych w doświadczeniach na gryzoniach, zostały dokładnie omówione w przeglądzie Europejskiego Urzędu ds. Bezpieczeństwa Żywności (EFSA) z 2015 r. W badaniach przeprowadzonych zgodnie ze standardami FDA/NTCR 2,2-bis(4-hydroksyfenylo)propan wpływał na rozrodczość jedynie przy bardzo dużych dawkach, wywołujących również innego rodzaju efekty toksyczne. Na podstawie wyników obszernych badań przeprowadzonych z zastosowaniem szerokiego zakresu dawek nie potwierdzono wpływu 2,2-bis(4-hydroksyfenylo) propanu na rozrodczość i rozwój przy zastosowaniu związku w małych dawkach, poniżej 5 mg/kg mc. Na podstawie wyników badań epidemiologicznych przeprowadzonych w Chinach wykazano, że u pracowników narażonych zawodowo na bisfenol A występowało pogorszenie jakości nasienia. Nie można jednakże wykluczyć ewentualnego wpływu czynników współwystępujących w środowisku pracy.

    2,2-Bis(4-hydroksyfenylo)propan w organizmie zwierząt jest sprzęgany i w postaci glukuronidu wydalany z moczem. Główną drogą wydalania jest kał, z którym (bez względu na drogę podania) w postaci niezmienionej usuwane jest 50 ÷ 80% podanej dawki. U ludzi 2,2-bis(4-hydroksyfenylo)propan jest sprzęgany z kwasem glukuronowym i siarkowym a następnie wydalany z moczem.

    Zarówno w Polsce, jak i w większości innych państw, dla 2,2-bis(4-hydroksyfenylo)propanu obowiązuje wartość NDS w powietrzu na stanowiskach pracy na poziomie 5 mg/m3 oraz najwyższa dopuszczalna wartość chwilowa (NDSCh) – 10 mg/m3.

    W Naukowym Komitecie ds. Dopuszczalnych Wartości Narażenia Zawodowego na Czynniki Chemiczne (SCOEL) zaproponowano ustanowienie wartości wskaźnikowego dopuszczalnego poziomu bisfenolu A w powietrzu środowiska pracy (OEL) na poziomie 2 mg/m3, wychodząc z wartości NOAEC dla działania drażniącego, ustalonego w doświadczeniu inhalacyjnym na szczurach. W SCOEL uznano, że brak jest toksykologicznych podstaw do ustalenia stężenia chwilowego (STEL) oraz oznakowania „skin”.

    Jako podstawę wyprowadzenia wartości NDS dla 2,2-bis(4-hydroksyfenylo)propanu przyjęto jego działanie toksyczne na nabłonek górnych dróg oddechowych zwierząt doświadczalnych w doświadczeniu inhalacyjnym. Zaproponowano dla frakcji wdychalnej bisfenolu A wartość NDS na poziomie 2 mg/m3. Wartość ta powinna chronić również przed toksycznym działaniem 2,2-bis(4-hydroksyfenylo)propanu na wątrobę i nerki. Brak jest podstaw merytorycznych do ustalenia wartości chwilowej NDSCh oraz wartości dopuszczalnej w materiale biologicznym (DSB).

    Normatyw oznakowano literą „I” – substancja o działaniu drażniącym oraz literą „A” – substancja o działaniu uczulającym.



    Buta-1,3-dien. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Anna Kilanowicz, Krystyna Sitarek, Małgorzata Skrzypińska-Gawrysiak

    Buta-1,3-dien jest gazem stosowanym do produkcji żywic termoplastycznych i elastomerów kauczuku i lateksu.

    Buta-1,3-dien wchłania się głównie w układzie oddechowym, a następnie jest metabolizowany do monoepoksydu – 1,2-epoksybut-3-enu i diepoksydu – 1,2:3,4-diepoksybutanu, a po ich sprzężeniu z glutationem jest wydalany z moczem.

    Z danych Centralnego Rejestru o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym wynika, że w 2015 r. liczba narażonych na ten związek w Polsce wynosiła 958 osób i dodatkowo około 200

    było narażonych na substancje ropopochodne, których działanie rakotwórcze jest uzależnione od buta-1,3-dienu. Według danych stacji sanitarno-epidemiologicznych w 2013 r. oraz 2016 r. nie zanotowano w polskim przemyśle narażenia pracowników na buta-1,3-dien o stężeniu większym niż 4,4 mg/m3, czyli przekraczającym obowiązującą wartość NDS.

    Buta-1,3-dien w małych stężeniach jest łagodnym czynnikiem narkotycznym dla ludzi, natomiast u osób zawodowo narażonych na ten związek stwierdzano objawy jego działania drażniącego na błony śluzowe oczu i dróg oddechowych.

    Buta-1,3-dien jest substancją o niewielkiej toksyczności ostrej dla zwierząt (wartość LC50 dla szczurów wynosi 270 000 mg/m3). Substancja ta jest mutagenna i genotoksyczna, może powodować uszkodzenia materiału genetycznego komórek somatycznych i komórek płciowych. Wykazano, że buta-1,3-dien jest czynnikiem rakotwórczym dla myszy B6C3F1 i szczurów. Istnieją również dowody epidemiologiczne świadczące o tym, że narażenie zawodowe na buta-1,3-dien jest związane z ryzykiem powstawania nowotworów układu limfohematopoetycznego. Według klasyfikacji IARC buta-1,3-dien jest zaliczany do grupy 1,

    czyli czynników rakotwórczych dla ludzi, a wg klasyfikacji ACGIH do grupy A2, czyli substancji podejrzanych o działanie rakotwórcze na ludzi. W Europie buta-1,3-dien jest zaklasyfikowany do kategorii 1A czynników rakotwórczych i do kategorii 1B czynników mutagennych.

    Buta-1,3-dien nie powoduje zaburzeń płodności, a jego działanie teratogenne ujawniło się tylko wówczas, gdy zastosowane dawki były toksyczne dla matek.

    W dyrektywie Parlamentu Europejskiego i Rady (UE) dla buta-1,3-dienu podano wartości dopuszczalnego stężenia wiążącego (BOELV) na poziomie 2,2 mg/m3. Dyrektywa wejdzie w życie w państwach członkowskich UE 17 stycznia 2020 r.

    Zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) buta-1,3-dienu w powietrzu środowiska pracy na poziomie 2,2 mg/m3 oraz następujące wskaźniki dopuszczalnego stężenia w materiale biologicznym (DSB):

    –– 1,6 mg 1,2-dihydroksy-4-(N-acetylocysteino-S-ylo)butanu/g kreatyniny w moczu, mierzone nazakończenie zmiany roboczej

    –– 2,1 pmol/g Hb – addukty hemoglobiny: mieszanina N-[1-(hydroksymetylo)prop-2-enylo]waliny i N-(2-hydroksybut-3-enylo)waliny we krwi obrazujące narażenie w okresie ostatnich 120 dni.

    Normatyw ten dodatkowo oznaczono „Carc. 1A” – substancja o udowodnionym działaniu rakotwórczym dla człowieka i „Muta. 1B” – substancja, która jest rozpatrywana jako mutagenna dla człowieka. Nie znaleziono podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) buta-1,3-dienu.

    Oszacowane dodatkowe ryzyko powstania białaczki przy 40-letnim okresie narażenia na buta-1,3-dien o stężeniu 2,2 mg/m3 wynosi 8 · 10-7, jest więc małe w porównaniu z ryzykiem dla populacji generalnej w Polsce, które wynosi 7,15 · 10-5.



    Fenoloftaleina – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Katarzyna Konieczko

    Fenoloftaleina jest bezbarwnym i bezwonnym ciałem stałym o budowie krystalicznej. W formie sproszkowanej ma kolor biały lub bladożółty. Jest nielotna, praktycznie nierozpuszczalna w wodzie, natomiast dobrze rozpuszcza się w etanolu.

    Nie występuje jako produkt naturalny. Syntetyczna substancja jest stosowana jako wskaźnik pH w laboratoriach, podczas prac związanych z obróbką powierzchni metali w galwanizerniach i w lakierniach oraz do pomiaru nasycenia betonu ditlenkiem węgla. Do końca ubiegłego wieku była powszechnie stosowana jako składnik środków przeczyszczających dostępnych bez recepty – dopiero w 1999 r. w agencji Żywności i Leków w USA (FDA, ang. Food and Drug Administration) usunięto fenoloftaleinę z listy substancji uznanych za bezpieczne. W Polsce w 2016 r. prace z fenoloftaleiną zgłosiło 255 zakładów pracy, z czego większość stanowiły laboratoria, a liczba narażonych osób wynosiła 2,5 tysiąca.

    Fenoloftaleina stosowana w dawkach terapeutycznych była dobrze tolerowana, rzadko zgłaszanymi skutkami ubocznymi były: uczucie dyskomfortu w jamie brzusznej, nudności, zmniejszone ciśnienie tętnicze i osłabienie. Przewlekłe stosowanie fenoloftaleiny powodowało: rozszerzenie okrężnicy, zmniejszenie grubości wyścielającej

    jelito błony śluzowej, zaburzenia gastryczne, odwodnienie i zaburzenie równowagi elektrolitów.

    W badaniu 13-tygodniowym, w którym fenoloftaleinę podawano zwierzętom doświadczalnym z paszą, myszy były bardziej wrażliwym gatunkiem od szczurów. W przypadku samców obserwowano zmiany w jądrach i najądrzach, a u zwierząt obu płci hipoplazję i martwicę komórek szpiku kostnego.

    Na podstawie wyników badań genotoksyczności wykazano, że fenoloftaleina działa jako promutagen i wywiera efekt klastogenny po aktywacji metabolicznej. W badaniach działania fenoloftaleiny na rozrodczość zwierząt wykazano jej szkodliwy wpływ na funkcje rozrodcze samców. W Unii Europejskiej (UE) fenoloftaleina jest zaklasyfikowana jako substancja mutagenna kategorii 2 oraz działająca szkodliwie na rozrodczość kategorii 2 (ze względu na wpływ na płodność).

    U osób stosujących leki przeczyszczające oparte na fenoloftaleinie w badaniach kliniczno-kontrolnych obserwowano niewielki wzrost ryzyka raka jelita grubego i raka jajnika, zwłaszcza przy intensywnym stosowaniu tych środków, ale zależność nie była istotna statystycznie.

    W 2-letnim badaniu rakotwórczości przeprowadzonym w ramach Narodowego Programu Toksykologicznego w USA (NTP, ang. National Toxicology Program) u samców szczurów zaobserwowano istotny wzrost liczby przypadków łagodnego guza chromochłonnego rdzenia nadnerczy oraz gruczolaka i raka z nabłonka kanalików nerkowych, a u myszy obu płci odnotowano istotny wzrost liczby przypadków mięsaka histiocytarnego. Ponadto u samic wykazano wzrost liczby przypadków złośliwego chłoniaka (wszystkich typów) oraz chłoniaka grasicy i łagodnych nowotworów jajnika, w związku z czym fenoloftaleina została uznana za substancję o przewidywanym działaniu rakotwórczym na ludzi (NTP R). W eksperymencie przeprowadzonym na heterozygotycznych myszach p53(+/-) obu płci potwierdzono wzrost liczby przypadków chłoniaka. Eksperci Unii Europejskiej zaklasyfikowali fenoloftaleinę do kategorii 1B substancji rakotwórczych, czyli do substancji co do których wiadomo lub istnieje domniemanie, że są rakotwórcze dla człowieka, przy czym klasyfikacja opiera się na wynikach badań przeprowadzonych na zwierzętach. W Europejskiej Agencji Chemikaliów (ECHA, ang. European Chemicals Agency) uznano fenoloftaleinę za substancję wzbudzającą szczególnie duże obawy (SVHC).

    Obliczone na podstawie wyników badań NTP dodatkowe ryzyko chłoniaka złośliwego przy narażeniu zawodowym na fenoloftaleinę o stężeniu 8,25 mg/m3 przez 40 lat wynosi 10-4. Zaproponowano przyjęcie jako wartości najwyższego dopuszczalnego stężenia (NDS)

    fenoloftaleiny stężenia 8 mg/m3. Ponieważ fenoloftaleina jest słabo rozpuszczalnym w wodzie ciałem stałym, w środowisku pracy będzie występować jedynie narażenie na pyły tej substancji, stąd zaproponowana wartość NDS powinna dotyczyć frakcji wdychalnej substancji. Proponuje się oznakowanie fenoloftaleiny jako „Carc. 1B” informujące, że jest to substancja rakotwórcza kategorii 1B oraz „Ft” informujące, że jest to substancja działająca szkodliwie na rozrodczość. Brak jest podstaw do ustalenia najwyższego dopuszczalnego stężenia chwilowego (NDSCh) fenoloftaleiny oraz wartości dopuszczalnej

    w materiale biologicznym (DSB).



    Fenylohydrazyna i jej sole – w przeliczeniu na fenylohydrazynę. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Anna Kilanowicz, Małgorzata Skrzypińska-Gawrysiak

    Fenylohydrazyna w temperaturze pokojowej jest bezbarwną lub żółtą oleistą cieczą, a w niższych temperaturach występuje w postaci krystalicznej.

    Fenylohydrazyna jest stosowana w syntezie organicznej jako silny środek redukujący lub jako półprodukt w syntezie innych związków chemicznych (np. barwniki, leki). Fenylohydrazyna jest również stosowana jako odczynnik chemiczny. Na początku XX wieku fenylohydrazyna była stosowana jako lek w czerwienicy prawdziwej oraz innych zaburzeniach krwi.

    Zawodowe narażenie na fenylohydrazynę i jej sole może występować podczas: produkcji, dalszego przerobu i dystrybucji tych związków, a także podczas ich stosowania.

    W Polsce w 2014 r. na fenylohydrazynę było narażonych 711 osób (w tym 531 kobiet). Według danych GIS tylko 2 pracowników było narażonych na stężenie fenylohydrazyny w powietrzu w zakresie > 0,1 ÷ 0,5 obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS = 20 mg/m3).

    Fenylohydrazyna jest klasyfikowana jako substancja toksyczna po podaniu drogą pokarmową, w kontakcie ze skórą i w następstwie wdychania.

    W dostępnej literaturze opisano kilka przypadków zatrucia ludzi fenylohydrazyną drogą inhalacyjną i przez skórę. Niepożądane skutki przewlekłego działania fenylohydrazyny u pacjentów stosujących ją jako lek to: postępująca niedokrwistość hemolityczna z hiperbilirubinemią i urobilinemią, obecność ciałek Heinza w krwinkach czerwonych, upośledzenie funkcji nerek i wątroby jako objaw wtórny do działania hemolitycznego fenylohydrazyny. Czasami występowała methemoglobinemia i leukocytoza. Najczęstsze objawy zatrucia to: zawroty głowy, biegunki, ogólne osłabienie, zmniejszenie ciśnienia krwi.

    Fenylohydrazyna działa drażniąco na skórę. Opisano także kilka przypadków reakcji nadwrażliwości skóry na fenylohydrazynę i jej chlorowodorek. Wykazano, że fenylohydrazyna daje reakcje krzyżowe z solami hydrazyny.

    U zwierząt głównymi objawami ostrego zatrucia fenylohydrazyną było tworzenie znacznych ilości methemoglobiny i powstawania jej następstw, tj.: hemoliza, tworzenie ciałek Heinza, retikulocytoza, hiperplazja szpiku kostnego, powiększenie śledziony i uszkodzenie wątroby. Obserwowano także pobudzenie motoryczne (ruchowe) oraz drgawki toniczno-kloniczne. W wyniku powtarzanego narażenia stwierdzono, że fenylohydrazyna oprócz niedokrwistości hemolitycznej powoduje również zaburzenia hemostazy oraz prowadzi do ostrej zakrzepicy płuc. Dostępne dane nie są wystarczające do określenia zależności dawka-skutek ani do ustalenia wartości NOAEL.

    Fenylohydrazyna jest mutagenem w warunkach in vitro. Niektóre dowody wskazują na jej aktywność genotoksyczną w warunkach in vivo (metylacja i fragmentacja DNA). Fenylohydrazyna i jej sole zostały sklasyfikowane jako substancje mutagenne kategorii zagrożenia 2.

    W dostępnym piśmiennictwie i w bazach danych nie znaleziono informacji dotyczących działania rakotwórczego fenylohydrazyny i jej soli na ludzi. Wykazano natomiast działanie rakotwórcze fenylohydrazyny na zwierzęta doświadczalne. Narażenie myszy drogą pokarmową powodowało wystąpienie nowotworów płuc oraz nowotworów naczyń krwionośnych. Międzynarodowa Agencja Badań nad Rakiem (IARC) nie sklasyfikowała fenylohydrazyny i jej soli pod kątem działania rakotwórczego. W Unii Europejskiej fenylohydrazynę i jej sole sklasyfikowano jako substancje rakotwórcze kategorii zagrożenia 1.B. Nie ma wystarczających danych dotyczących wpływu fenylohydrazyny na rozrodczość i toksyczność rozwojową, aby można było ocenić, czy skutki takie mogą wystąpić u ludzi narażonych na fenylohydrazynę i jej sole.

    Na podstawie obserwowanych skutków ogólnoustrojowych/układowych u ludzi i zwierząt narażonych na fenylohydrazynę i jej sole można przyjąć, że związki te są wchłaniane do organizmu: drogą inhalacyjną i pokarmową, przez skórę oraz po podaniu parenteralnym. W dostępnym piśmiennictwie nie znaleziono danych ilościowych dotyczących wydajności wchłaniania poszczególnymi drogami. Główne szlaki metaboliczne fenylohydrazyny to hydroksylacja do p-hydroksfenylohydrazyny oraz powstawanie fenylohydrazonów w reakcji z naturalnymi keto-kwasami. Metabolity w postaci glukuronidów są wydalane głównie z moczem.

    Istniejące dwa badania rakotwórczego działania chlorowodorku fenylohydrazyny wykazały, że związek podawany drogą pokarmową powodował istotny wzrost powstawania nowotworów płuc lub nowotworów naczyń krwionośnych. W drugim badaniu, pomimo dłuższego czasu narażenia, nie obserwowano istotnego wzrostu nowotworów płuc. Mimo tego, że wyniki obu tych badań wydają się mało wiarygodne w świetle obecnych kryteriów i są ograniczone tylko do jednego gatunku zwierząt (myszy) i jednej dawki, to jednak na ich podstawie Unia Europejska zaklasyfikowała fenylohydrazynę jako związek rakotwórczy kategorii zagrożenia 1B z przypisanym zwrotem wskazującym rodzaj zagrożenia H350 – może powodować raka.

    Z przeprowadzonej ilościowej oceny rakotwórczości fenylohydrazyny wynika, że pracy w narażeniu na fenylohydrazynę, równym dotychczasowej wartości NDS w Polsce (20 mg/m3) przez okres 40 lat pracy, odpowiada ryzyko wystąpienia raka płuca na poziomie 5,7 · 10-2. Ryzyko takie jest nieakceptowalne.

    Z szacowania ryzyka nowotworowego wynika, że dotychczasowa wartość NDS dla fenylohydrazyny powinna zostać zmniejszona.

    Istniejąca baza danych dotycząca toksyczności fenylohydrazyny i jej soli jest niewystarczająca, aby można było wyprowadzić wartość NDS na podstawie wartości NOAEL/LOAEL. Fenylohydrazyna ze względu na mechanizm działania oraz główne skutki toksyczne (hematotoksyczność) ma profil toksykologiczny podobny do aniliny. Zaproponowano, aby wartość NDS dla fenylohydrazyny przyjąć analogicznie do wartości NDS aniliny, tj. 1,9 mg/m3, co odpowiada wielkości ryzyka raka płuca w warunkach narażenia zawodowego na poziomie 5,4 · 10-3.

    Ze względu na wchłanianie dermalne fenylohydrazyny, zaproponowano oznaczenie normatywu zwrotem „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Dodatkowo, ze względu na działanie: drażniące, uczulające, rakotwórcze i mutagenne fenylohydrazyny, zaproponowano oznakowanie literami: „I” – substancja o działaniu drażniącym, „A” – substancja o działaniu

    uczulającym, „Carc. 1B” – substancja rakotwórcza kategorii zagrożenia 1B oraz „Muta. 2” – substancja mutagenna kategorii zagrożenia 2. Nie ma podstaw do ustalenia najwyższej dopuszczalnej wartości chwilowej (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB).



    Trimetyloamina. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
    Agnieszka Jankowska, Sławomir Czerczak

    Trimetyloamina (TMA) w temperaturze pokojowej jest gazem palnym o bardzo nieprzyjemnym zapachu zepsutych ryb. Próg zapachowy trimetyloaminy znajduje się w przedziale 0,5 ÷ 1,9 μg/m3. Substancja ta bardzo dobrze rozpuszcza się w wodzie. Trimetyloamina jest dostępna jako: bezwodny sprężony gaz, 33-procentowy roztwór w etanolu lub 40-procentowy roztwór wodny. Substancja ta jest głównie stosowana w syntezie organicznej do produkcji soli choliny, a przede wszystkim chlorku choliny. Trimetyloamina jest również stosowana do produkcji: substancji słodzących, skrobi kationowej, środków wabiących owady, środków dezynfekujących, żywicy anionowo-wymiennej mocnej zasady, a także jako przyspieszacz w procesie wulkanizacji, przy produkcji tworzyw sztucznych oraz do produkcji czwartorzędowych związków amoniowych. Ponadto trimetyloaminę stosuje się jako czynnik ostrzegawczy do nawaniania gazu i czynnik flotacyjny. Substancja ta jest zamieszczona w projekcie dyrektywy ustalającej 5. wykaz wskaźnikowych wartości dopuszczalnych z wartością OEL – 4,9 mg/m3 oraz krótkoterminową STEL – 12,5 mg/m3.

    Głównym skutkiem ostrego i przewlekłego działania trimetyloaminy jest działanie drażniące. Trimetyloamina może być szkodliwa dla ludzi narażonych drogą inhalacyjną, pokarmową lub przez skórę. Narządami krytycznymi w przypadku narażenia na trimetyloaminę są: oczy, skóra oraz górne drogi oddechowe. Próg działania drażniącego trimetyloaminy u ludzi narażonych jednorazowo został ustalony na poziomie 1 481 mg/m3 (mediana).

    U pracowników narażonych zawodowo na związek o stężeniu 48,5 mg/m³ i większym obserwowano umiarkowane skutki działania drażniącego na: układ oddechowy, oczy oraz skórę. U ludzi zatrudnionych przy produkcji i konfekcjonowaniu trimetyloaminy, narażonych na związek o stężeniach 0,24 ÷ 19,5 mg/m³ (głównie poniżej 12,1 mg/m³), nie obserwowano żadnychskutków zdrowotnych narażenia.

    Nie ma wyników badań dotyczących działania uczulającego trimetyloaminy. Trimetyloamina nie wykazuje działania mutagennego ani genotoksycznego. W dostępnym piśmiennictwie i bazach danych nie znaleziono informacji odnośnie działania rakotwórczego trimetyloaminy.

    W badaniach na myszach stwierdzono działanie embriotoksyczne trimetyloaminy. Wartość NOAEL (największa dawka substancji, przy której nie występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) dla myszy ustalono na poziomie 150 mg/kg mc./dzień.

    W 2-tygodniowym badaniu na szczurach ustalono wartość LOAEC (najmniejsze stężenie, przy którym występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) wynoszącą 183,75 mg/m³. Skutkiem krytycznym było działanie drażniące trimetyloaminy. Stwierdzono, że działanie układowe wystąpiło przy większych stężeniach. Wartość LOAEC dla działania drażniącego związku na: oczy, nos i gardło u ludzi ustalono na poziomie 48 mg/m³. Nie obserwowano skutków działania toksycznego trimetyloaminy poniżej stężenia 12,1 mg/m³. W większości państw, podobnie jak do tej pory w Polsce, obowiązuje wartość dopuszczalna (NDS) trimetyloaminy wynosząca 12 mg/m³, natomiast dopuszczalne stężenie chwilowe (NDSCh) – 24 mg/m³. W 2017 r. eksperci Komitetu Naukowego ds. Dopuszczalnych Norm Zawodowego Narażenia na Oddziaływanie Czynników Chemicznych w Pracy (SCOEL) zaproponowali stężenie 4,9 mg/m³ jako wartość OEL dla trimetyloaminy w celu uniknięcia szkodliwych skutków działania substancji na drogi oddechowe oraz działania drażniącego sensorycznego. Stwierdzono, że stężenie to będzie zabezpieczało również przed działaniem układowym trimetyloaminy. W celu uniknięcia “uciążliwości zapachowej” i aby zabezpieczyć pracowników przed działaniem drażniącym trimetyloaminy w SCOEL zalecono wartość krótkoterminową STEL na poziomie 12,5 mg/m³.

    W badaniu na działanie drażniące sensoryczne (czuciowe) na samcach myszy Swiss OF1 wyznaczona wartość RD50 dla trimetyloaminy wynosiła 147,62 mg/m3. Na podstawie wartości RD50 (147,62 mg/m3), stosując współczynnik 0,03, zaproponowano wartość NDS trimetyloaminy na poziomie 4,9 mg/m³. Wartość ta powinna zapobiegać skutkom zdrowotnym narażenia zawodowego na trimetyloaminę zarówno miejscowym, jak i układowym. Z uwagi na działanie drażniące trimetyloaminy na drogi oddechowe zaproponowano zmniejszenie obecnie obowiązującej wartości NDSCh ze stężenia 24 mg/m3 na stężenie 12,5 mg/m3. Normatyw oznakowano literą „I” (substancja o działaniu drażniącym). Nie ma podstaw merytorycznych do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB).



    Srebro – związki rozpuszczalne. Metoda oznaczania w powietrzu na stanowiskach pracy
    Jolanta Surgiewicz

    Związki srebra na ogół nie rozpuszczają się w wodzie. Do nielicznych rozpuszczalnych związków srebra należą, np.: azotan srebra, fluorek srebra, nadchloran srebra. Związki te są stosowane w analizie chemicznej i katalizie organicznej, do produkcji: innych związków srebra (np. halogenków), materiałów wybuchowych, środków antyseptycznych (w medycynie), luster oraz w klasycznej technice fotograficznej.

    Rozpuszczalne związki srebra wykazują działanie drażniące i żrące na skórę oraz błonę śluzową oczu, powodują również: trwałe uszkodzenia oczu, dysfunkcję układu oddechowego i nerwowego.

    Wartość najwyższego dopuszczalnego stężenia (NDS) dla rozpuszczalnych związków srebra, w przeliczeniu na srebro, została ustalona na poziomie 0,01 mg/m3.

    Celem pracy było opracowanie metody oznaczania stężeń rozpuszczalnych związków srebra w powietrzu na stanowiskach pracy w zakresie od 1/10 do 2 wartości NDS.

    Opracowana metoda oznaczania polega na: pobraniu próbki powietrza na filtr membranowy, wymywaniu rozpuszczalnych związków srebra z filtra za pomocą wody dejonizowanej oraz oznaczaniu związków srebra metodą absorpcyjnej spektrometrii atomowej z atomizacją w płomieniu powietrze-acetylen (F-AAS).

    Metoda umożliwia oznaczenie srebra w zakresie stężeń 0,070 ÷ 2,00 μg/ml. Uzyskana krzywa kalibracyjna srebra charakteryzuje się współczynnikiem korelacji R2 = 1,0000. Granica wykrywalności srebra (LOD) wynosi 0,009 μg/ml, natomiast granica oznaczalności (LOQ) – 0,027 μg/ml. Wyznaczony współczynnik odzysku z filtrów wynosi 0,99.

    Opracowana metoda pozwala na oznaczanie rozpuszczalnych związków srebra w powietrzu na stanowiskach pracy w zakresie stężeń 0,001 ÷ 0,028 mg/m3 (dla próbki powietrza o objętości 720 l), co odpowiada 0,1 ÷ 2,8 wartości NDS.

    Metoda charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur oznaczania substancji chemicznych.

    Metoda oznaczania rozpuszczalnych związków srebra została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku.



    Streszczenia roczników
    2019 - 2001
    Wybierz rocznikWybierz numer