PRINCIPLES AND METHODS OF ASSESSING THE WORKING ENVIRONMENT

NUMBER 3 (105) 2020




4-Chloro-o-toluidine and its hydrochloride – inhalable fraction
ANNA KILANOWICZ, JOANNA STRAGIEROWICZ, MAŁGORZATA SKRZYPIŃSKA-GAWRYSIAK

4-Chloro-o-toluidine (4-COT) and its hydrochloride are solids. 4-Chloro-o-toluidine is currently used as a dye in immunochemistry and molecular biology. In Poland, exposure to 4-COT and/or its hydrochloride was only repor­ted by laboratories. The number of people exposed was 262 in 2012 and 12 in 2017. Under occupational exposure conditions, 4-COT is absorbed through the skin and airways. Methemoglobinogenic effects and acute hemorrha­gic cystitis were diagnosed in exposed individuals. Median lethal doses after administration of 4-COT by the oral route to rodents were 860-1058 mg/kg b.w. The compound had a moderately irritating effect on skin and eyes. Studies of subchronic and chronic toxicity in animals indicate systemic toxicity. 4-COT had mutagenic and geno­toxic effects in vivo as in vitro. It caused damage and adducts of DNA. There are no data on the effects of 4-COT on human reproduction and no data on its embryotoxicity and teratogenicity. In mice, 4-COT did not affect the reproductive potential of males or the development of their offspring. A significant increase in the incidence of bladder cancer was observed in individuals occupationally exposed to 4-COT. There are no data on the concentra­tions of 4-COT to which these individuals were exposed. 4-COT is an animal carcinogen. 4-COT is classified as a category 1B carcinogen. IARC has classified 4-COT into group 2A – compounds with probable carcinogenic effects in humans. No data are available on the rate and efficiency of absorption of 4-COT by different routes. In animals, the metabolism of 4-COT may be via N-acetylation and N-hydroxylation/N-oxidation routes, involving CYP1A1 and/or CYP1A2, to active metabolites. The compound is excreted mainly with urine in unaltered form and the metabolites, e.g. 5-chloroantranilic acid and 4-chloro-2-methylacetanilide. There are no data on the toxicokinetic of 4-COT in humans. In most countries, no MAC values have been established due to the carcinogenic potential of 4-COT. Only in Croatia the MAC value was set at 0.01 mg/m3, with the notation ‘skin’. The basis for establishing this value is unknown. The carcinogenic effect of 4-COT has been used as a basis for proposing the MAC values.



Nitrilotriacetic acid and its salts – inhalable fraction
ELŻBIETA BRUCHAJZER, BARBARA FRYDRYCH, JADWIGA SZYMAŃSKA

Nitrilotriacetic acid (NTA) and its sodium salts are white and odourless solids. NTA is poorly soluble in water, unlike its trisodium salt (Na3NTA) (the most commonly produced and used). Nitrilotriacetic acid and its salts (Na3NTA) have chelating properties and they are used as EDTA replacement and fillers in cleaning, bleaching and disinfecting agents. On the basis of the identified uses reported to ECHA, NTA and its salts were included in the TOP50 carcinogenic substances. Human exposure to NTA and its salts may be related to their production, processing and use. In occupational exposure, the highest concentrations of nitrilotriacetic acid ranged between 0.24 and 3.7 mg/m3. No symptoms of a toxic effect were noted in humans at these concentrations. There are no data on human exposure to NTA and its salts in Poland. Trisodium nitrilotriacetate is classified as acute toxicity cate­gory 4, for which the LD50 value after intragastric administration is 1300 - 1600 mg/kg b.w. (in rats). The kidneys are the critical organs. Rats exposed chronically to Na3NTA at concentrations of 0.03% - 1% in feed caused symp­toms of kidney damage, and at concentrations of 1.5% - 2% in feed – cancer of the urinary system was observed. IARC includes NTA and its salts to group 2B (presumably carcinogenic to humans), and the European Union has classified Na3NTA to category 2 with the footnote “H351 – suspected of causing cancer” and the annotation “at concentrations >5%”. There is no reliable evidence of mutagenicity of NTA and its salts. Nitrilotriacetic acid is very quickly absorbed into the body, reaching the highest concentrations after 1 - 2 hour, with a half-life of about 3 hours. It is excreted mainly unchanged. The mechanism of the toxic action of NTA is associated with disturbanc­es in the level of certain elements in the kidneys, which lead to cell damage, proliferative processes, and the forma­tion of epithelial neoplasms in the urinary tract. Nitrilotriacetic acid and its salts increase the carcinogenic effect of nitrosamines in the kidneys. The basis for determining the maximum acceptable concentration (MAC; TLV-TWA) for NTA were experiments performed on animals, in which NTA and its salts were found to be nephrotoxic. The concentration of 3 mg/m3 was assumed as the MAC value. There are no bases to determine the short-term exposure limit (STEL) and the biological limit value (BLV). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



Pentan-1-ol and its isomers: pentan-2-ol, pentan-3-ol, 2-methylbutan-1-ol, 3-methylbutan-2-ol, 2-methylbutan-2-ol, 2,2-dimethylpropan-1-ol
MAŁGORZATA KUCHARSKA, ANNA KILANOWICZ

Pentanol is an aliphatic saturated monohydroxyl alcohol (C5H11OH) with eight positional isomers. Four of them are primary alcohols, three – secondary, one – tertiary. Under normal conditions, pentanols (amyl alcohols) are colorless, flammable liquids, except for 2,2-dimethylpropan-1-ol, which is a crystalline solid. They are flammable and their vapors may form an explosive mixture with air. Amyl alcohols are used as solvents for varnishes, resins, rubbers, as well as in the processing of plastics and petroleum. They are also used for the production of synthetic flavorings and as raw materials for the production of pharmaceutical preparations. Under occupational exposure conditions, the respiratory tract is the main absorption route of pentanols. They are irritating to the respiratory system, skin and eyes of both animals and humans. In humans, especially those intolerant to lower alcohols (ethanol), pentanol isomers caused skin irritation. Its prolonged dermal application in animals caused severe irritation with erythema, atony, and also necrosis. In the body, pentanols isomers can be oxidized or conjugated with glucuronic acid. Primary alcohols are metabolized mainly to the corresponding aldehydes, followed by acids, secondary alcohols are partially oxidized to the corresponding ketones or largely glucuronidated. Tertiary alcohol (2-methyl-2-butanol) cannot form aldehyde and ketone; therefore, it is excreted unchanged in the urine as a glucuronide. The mechanism of pentanol toxicity has not been fully elucidated. Based on the results of experimental animal studies, it was shown that the critical effect of exposure to pentan-1-ol and its isomers is an irritation. The MAC value for pentanols was calculated on the basis of the RD50 value determined in mouse studies which gives an MAC-TWA value of 75 mg/m3. In order to protect workers against exposure to peak concentrations of pentanols, the values of the maximum admissible instantaneous concentration (MAC-STEL) was set as a double of the MAC value, i.e., 150 mg/m3. There are no substantive grounds to determine the value of admissible concentration in biological material (BEI) for pentan-1-ol and its isomers. Because of the irritating effect, the substance has been marked with the letter “I” (irritant). The proposed values of hygienic thresholds should protect workers against irritating effects of pentan-1-ol and its isomers to the eyes and mucous membranes of the upper respiratory tract, and due to the fact that systemic effects were observed at exposure to much higher concentrations/doses, also against systemic effects. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



Quinoline Determination in workplace air with gas chromatography
JOANNA KOWALSKA

Quinoline is a substance classified into the group of carcinogens. The aim of this study was to develop and validate a method for determining concentrations of quinoline in workplace air. The determination method was based on the adsorption of quinoline on sorbent tubes filled with XAD-4 (80mg/40mg), extraction with ethyl acetate and the analysis of the resulting solution with gas chromatography with mass spectrometry (GC-MS). A capillary column with HP-5silMS (30 m × 0.25 mm, i.d. × 0.25 μm film thickness) was used. The method is linear within the working range 2.1 - 43.7 μg/ml, which is equivalent to air concentrations from 0.06 to 1.2 mg/m3 for a 36-L air sample. The analytical method described in this paper makes it possible to selectively determine quinoline in workplace air in the presence of coexisting substances. The method is precise, accurate and it meets the criteria for procedures for mea­suring chemical agents listed in Standard No. EN 482. The method can be used for assessing occupational exposure to quinoline and associated risk to workers’ health. The developed method of determining quinoline has been recorded as an analytical procedure (see appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.



Phenylhydrazine Determination in workplace air with high pressure liquid chromatography
MAREK ZIELIŃSKI, MARZENA BONCZAROWSKA, EWA TWARDOWSKA

Phenylhydrazine is colorless oily liquid with a weak aromatic odor. Phenylhydrazine is used in organic synthesis as a strong reducing agent or as an intermediate in the synthesis of other chemical compounds (in the production of dyes and medicines). It is also used as a chemical reagent to identify aldehydes and ketones as well as to identify and de­termine the configuration of sugars. Phenylhydrazine may enter the human body by inhalation, ingestion or by direct contact with the skin. Adsorbed, it binds quickly to hemoglobin. The toxic effect of phenylhydrazine is to damage red blood cells. This may cause hemolytic anemia and, consequently, damage to the spleen and liver. This compound can also be sensitizing and cause contact dermatitis. The aim of this study was to develop and validate a sensitive method for the determination of phenylhydrazine concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of the standard PN-EN 482. Studies was performed using high-performance liquid chromatography (HPLC) technique. A Waters Alliance 2695 liquid chromatograph equipped with a quaternary pump, Supelcosil C-18 (150 × 2.1 mm; 5 μm) analytical column, spectrophotometric detector (UV-VIS), and au­tosampler, was used for chromatographic separations. The method is based on the adsorption of phenylhydrazine on silica gel coated with 0,1 M/l hydrochloric acid, extraction of phenylhydrazine with mixture of acetonitrile and water, derivatization of phenylhydrazine with acetone and determination of resulted derivative by means of HPLC method. Recovery of phenylhydrazine from silica gel coated with HCl amounted to 0,90. Method is linear (r = 0.9996) within the investigated working range 11,4 ÷ 228 mg/ml, which is equivalent to air concentrations from 0.19 to 3.80 mg/m3 for a 180 L air sample. Limit of quantification amounted to 0.027 μg/ml. Analytical method described in this paper enables selective determination of phenylhydrazine in workplace atmosphere from 0.19 mg/m3 (1/10 MAC value). The method is characterized by good precision and accuracy and meets the criteria for the performance of proce­dures for the measurement of chemical agents, listed in EN 482:2006. The method may be used for the assessment of occupational exposure to phenylhydrazine and the associated risk to workers’ health. The method for determining phenylhydrazine has been recorded in the form of an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



Calcium oxide Determination in workplace air
JOLANTA SURGIEWICZ

Calcium oxide is used in construction, the chemical industry, the sugar industry, tanning in the soap and dyeing industries. It is also used as an insecticide and fertilizer in agriculture. The compound is toxic in a similar way to caustic soda, irritates the skin, has a burning effect, causes very painful and difficult to heal wounds. May lead to puncture of the nasal septum and pneumonia. It is especially dangerous for the eyes. Currently, maximum allow­able concentration value (MAC) for calcium oxide in the work environment in Poland has been determined taking into account the fraction; for inhalable fraction at 2 mg/m3 and STEL at 6 mg/m3 and for respirable fraction at 1 mg/m3 and STEL at 4 mg/m3. The aim of the study was to develop a method for determining the concentration of calcium oxide in the workplaces atmosphere, in the range from 1/10 to 2 of NDS. The developed method is based on collecting, stopping calcium oxide, contained in the inhalable and the respirable fraction, on membrane fil­ters, mineralizing filters with concentrated nitric acid and determining calcium of the resulted solution by atomic absorption spectrometry with atomization in acetylene-air flame (F-AAS). The method enables determination of calcium in the air at workplaces in the concentration range 0.50 - 25.00 μg/ml. The obtained calcium calibration curve has a high correlation coefficient (R2 = 0.9999). The limit of detection (LOD) is 0.5 ng/ml, whereas the limit of quantification (LOQ) is 1.4 ng/ml. The determined recovery factor was 1.00. The developed analytical method allows the determination of the concentration of calcium oxide contained in the workplace air in the inhalable fraction in the concentration range of 0.10 - 4.86 mg/m3 (for a sample air volume 720 l) and in the respirable fraction in the concentration range of 0.10 - 5.11 mg/m3 (for a sample air volume 684 l). The method has good precision and accuracy and meets the requirements of European Standards PN-EN 482 and PN-EN 13890:2010 for procedures for determining chemical agents. The method for determining calcium oxide was presented in the form of the analytical procedure (Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



CONTENTs
2024 - 2004
Select yearSelect issue