PRINCIPLES AND METHODS OF ASSESSING THE WORKING ENVIRONMENT

NUMBER 1 (115) 2023




  • Diesel engine exhaust measured as elemental carbon. Determination in workplace air
    Małgorzata Szewczyńska, Małgorzata Pośniak, Joanna Kowalska, p. 5-25
  • Effect of biofuels on frequency of micronuclei in CHO-9 and A549 cells
    Jolanta Skowroń, Lidia Zapór, Katarzyna Miranowicz-Dzierżawska, p. 27-43
  • Enflurane. Documentation of proposed values of occupational exposure limits (OELs)
    Małgorzata Kupczewska-Dobecka, Marek Dobecki, , p. 45-89
  • Triphenyl phosphate. Documentation of proposed values of occupational exposure limits (OELs)
    Mateusz Szparaga, Sławomir Czerczak, Małgorzata Kupczewska-Dobecka, p. 91-113
  • Diisobutyl phthalate. Documentation of proposed values of occupational exposure limits (OELs)
    Joanna Jurewicz, Ewelina Czubacka, Małgorzata Kupczewska-Dobecka, p. 115-149
  • Isoprene. Documentation of proposed values of occupational exposure limits (OELs)
    Michał Klimczak, Anna Kilanowicz-Sapota, p. 151-175
  • The activity of the Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment in 2020-2022
    Jolanta Skowroń, Lidia Zapór, Katarzyna Miranowicz-Dzierżawska, p. 177-188
  • Diesel engine exhaust measured as elemental carbon. Determination in workplace air
    Małgorzata Szewczyńska, Małgorzata Pośniak, Joanna Kowalska

    In Poland, until now it has not been necessary to determine the elemental carbon (EC) concentrations because Polish NDS values are set for a respirable fraction of diesel exhausts. No data on the level of EC concentrations in workplace air are available although the exposure to this hazardous factor concerns a large population of workers. The exposure concerns people working in underground mines and tunneling, firefighters, lorry and bus drivers, and car service station workers. The introduction of 0.05 mg/m3 BOELV value for diesel exhaust gases in working environment, measured as elemental carbon into the Directive 2019/130 of the European Parliament, requires the adjustment of the national legislation. The aim of the study was to develop a method for determining EC in workplace air at the level of 0.005 mg/m3. As a result, a method for determination EC in workplace air using a thermo-optical analyzer with a flame ionization detector was developed. The method consists in passing the tested air containing diesel exhaust gases through a quartz filter placed in a cassette and its analysis in an appropriate temperature program. An EC determination of 0.0041 mg/m 3 was obtained. The total accuracy of the method was 5.3%, a relative total uncertainty was 11.6% and an expanded uncertainty was 23.2%. This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Effect of biofuels on frequency of micronuclei in CHO-9 and A549 cells
    Jolanta Skowroń, Lidia Zapór, Katarzyna Miranowicz-Dzierżawska

    Biofuels have a number of advantages that make them an attractive source of energy. However, their effect on the human body has not been fully understood. The article presents the results of studies on the genotoxic effect of four biofuels obtained in the process of transesterification of waste fats with in vitro methods. DNA damage tests (micronucleus test) of biofuels were carried out on the cells of: neoplastic lung epithelium (A549) and Chinese hamster ovary (CHO-9). The tested biofuels caused a statistically significant increase in the frequency of micronuclei in CHO-9 cells (p < 0.05), depending on the concentrations used. However, they did not induce a statistically significant increase in the frequency of micronuclei in A549 cells. The results of the database review (mainly MEDLINE and EMBASE) identified four main sources of human health risks from biofuels: occupational hazards, water / soil contamination, air pollution from biofuel production and use, and the impact on food prices. The results of the presented studies are only a step in the toxicological assessment of biofuels, the effect of which on cells depends on their chemical composition and the type of cells used for the tests. Biofuel II, obtained from animal fat, containing the highest concentration of fatty acid methyl esters showed the strongest genotoxic effect (induced frequency of micronuclei) on CHO-9 Chinese hamster ovary cells. The presented research results could familiarize the producers and users of biofuels with the risks associated with their use. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Enflurane. Documentation of proposed values of occupational exposure limits (OELs)
    Małgorzata Kupczewska-Dobecka, Marek Dobecki,

    Enflurane is a fluorinated inhalation anesthetic. Data on the effects of enflurane have mainly been obtained from people undergoing anesthesia. The minimum concentration of enflurane in the alveoli during anesthesia, expressed as a percentage of the MAC (Minimal Anesthetic Concentration) atmosphere, is approx. 1.68 vol.% for adults. Cases of malignant hyperthermia, hypotension, respiratory depression and hypoxia, arrhythmias and leukocytosis have been observed in patients. Cases of mild and moderate liver injury have been reported. The expert estimate of the reduction in psychomotor performance in volunteers exposed to air enflurane is 5% of the MAC value. Occupational exposure epidemiology studies have raised concerns about the effects of anesthetic gas mixtures on miscarriage rate, fetal development, preterm labor and birth defects in children, but none of these studies specifically determined the type and concentration of anesthetic gases used. A carcinogenicity and mutagenicity study with enflurane was negative. Animal studies mainly involved exposure to subanesthetic concentrations of enflurane. In most experiments, no evidence of impaired fertility or damage to the fetus by enflurane in animals was found. A critical effect of enflurane in humans is its effect on the central nervous system, manifested by deterioration of psychomotor performance. Animal studies were used to calculate the OEL value for enflurane. The concentration of 153.2 mg/m3 (20 ppm) was assumed as the NOAEC value for the systemic effect of enflurane. MAC value for enflurane was proposed at the level of 38 mg/m3 (5 ppm). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Triphenyl phosphate. Documentation of proposed values of occupational exposure limits (OELs)
    Mateusz Szparaga, Sławomir Czerczak, Małgorzata Kupczewska-Dobecka

    Triphenyl phosphate (TPP) is a colorless solid with a phenol-like odor. It is used as a plasticizer in the production of resins, waxes, adhesives, spectacle frames, cosmetics. Triphenyl phosphate is characterized by low acute toxicity after oral, inhalation and dermal exposure. Absorption from the gastrointestinal tract and the injection site is slow. In animal studies, it was not irritating to the skin, caused eye irritation in rabbits. Did not show mutagenic and carcinogenic effects in animals (no data in humans). Triphenyl phosphate has a systemic effect. In a 13-week toxicity study in Wistar rats, hepatic cell hyperplasia and thyroid morphological changes were observed at a dose of 105 mg/kg bw/day. The dose of 20 mg/kg bw/day was assumed as the NOEL value (the highest level of no effect) for the organ and neurotoxic effects. In the NTP study (2018), the lower confidence limit of the BMDL reference dose was set at 39 mg/kg bw. for systemic effects, as manifested by a reduction in the level of free thyroxine and HDL cholesterol. At higher doses of the compound (>55 mg/kg), serum cholinesterase activity was inhibited by 35–70% (the BMD reference dose for this effect was not calculated). At 200 mg/kg bw/day, rabbits had an increased percentage of fetuses without additional lung lobes. The dose of 80 mg/kg bw/day was assumed as the NOAEL for developmental toxicity. Assuming the NOEL value, the value of the highest allowable concentration (NDS) for TPP was calculated at the level of 10 mg/m3. There are no grounds to establish the instantaneous value (NDSCh) and the limit value for biological material (DSB). The substance does not meet the criteria for classification for skin absorption. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Diisobutyl phthalate. Documentation of proposed values of occupational exposure limits (OELs)
    Joanna Jurewicz, Ewelina Czubacka, Małgorzata Kupczewska-Dobecka

    Diisobutyl phthalate (DiBP) [84-69-5] is a colorless to pale yellow liquid. It is used in the textile, leather, electrical industry, construction, in household products, as well as a softening additive for polymers. DiBP does not accumulate and is mainly excreted in the urine. It has a short biological half-life and is rapidly metabolized to a monoester and eliminated mainly as free phthalic acid monoester (monoisobutyl phthalate, MiBP) or glucuronide-conjugated phthalic acid monoester. The value of the Maximum Admissible Concentration (MAC) has not been established for DiBP so far in Poland. There are no data on irritation or sensitization and on carcinogenic effect of in humans and laboratory animals in the available literature. Diisobutyl phthalate is a substance of low acute toxicity. Reproductive and hepatotoxic effects were considered as critical effects of DiBP according to the study conducted on laboratory animals. The results of a 4-month study on rats administered DiBP in the feed at doses of 0, 70, 700, 3500 mg/kg bw/day were used to calculate the maximum concentration value (MAC-TWA). In the study, a decrease in the liver weight, decrease in the testes weight, number of erythrocytes and haemoglobin level were observed. The dose of 70 mg/kg bw/day was taken as the NOAEL value. After applying appropriate uncertainty factors, the calculated TLV value is 4 mg/m3. There are no basis to determine the short-term value (STEL) and biological limit values (BLV). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Isoprene. Documentation of proposed values of occupational exposure limits (OELs)
    Michał Klimczak, Anna Kilanowicz-Sapota

    Isoprene is a colourless liquid with high volatility commonly used in industry, mainly in the production of polymers. It is also synthetized endogenously in animals and humans. In Poland, the number of people exposed to isoprene in 2020 was 36, including 8 women. In 2020-2021, there were no workers exposed above 0.1 of the MAC value (i.e. 10 mg/m3) or MAC value. Data on the toxicity of isoprene in humans are scarce. Only weak irritant effects on the mucous membranes of the nose, throat and larynx were observed. Effects of chronic isoprene toxicity studies in mice and rats (inhalation exposure) include haematological disorders, testicular atrophy, pre-neoplastic lesions and various tumours. Neurotoxic effects and degeneration of the white matter of the spinal cord were also observed in mice. Isoprene in experimental animals did not affect reproduction or cause developmental toxicity. In in vivo studies, it showed genotoxic effects mediated by its metabolite diepoxide. Due to the carcinogenicity of isoprene in mice and rats, the compound was considered as a carcinogen category 1B. The proposed MAC value for isoprene (8 mg/m3 (2.8 ppm)) is based on the neurotoxic effects observed in mice exposed to isoprene by inhalation (LOAEC value of 70 ppm (≈ 200 mg/m3)). There is no basis for setting the STEL and BEI values nor for label labelling with the symbol “skin”. Isoprene is labelled with the symbol “Carc. 1B”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    The activity of the Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment in 2020-2022
    Jolanta Skowroń, Lidia Zapór, Katarzyna Miranowicz-Dzierżawska

    In the fifth phase of the National Programme “Improvement of safety and working conditions”, 9 meetings of the Commission took place, during which the following items were discussed: 26 documentation of proposed values of occupational exposure limits (OELs), changes in Annex No. 2 to the Regulation on MAC and MAI point C.1: “Hot microclimate”, updating Directive 2000/54/EC,adapting the Polish list of MAC values to Directive 2019/1831/EU and to the following directives: 2017/2398/EU, 2019/130/EU, 2019/983/EU and 2022/431/EU amending Directive 2004/37/EC. The Commission suggested to the Minister of Family and Social Policy the following changes of MAC and MAI values: adding 15 new chemical substances to the list of MAC, changing current values for 9 chemical substances, changing in Annex 2 regarding to the hot microclimate, deletion of reference “7)” from pos. 456 of the MAC list and changing its wording, changing in pos. 315 “Crystalline silica” and introduction of the “ppm” unit for substances included in the annex to the Directives: 2017/164/EU, 2017/2398/EU and 2022/431/EU to the list of MAC. Two ordinances of the Minister responsible for work were prepared and issued in 2020-2022. The results of the Commission’s work in 2020-2022 were propagated in 12 issues of Principles and Methods of Assessing the Working Environment, in which was published: 14 articles, 23 documents of occupational exposure levels for chemicals, 31 methods for determining the concentrations of chemicals in the working environment, and annual reports on the activities of the Commission. The results of the Commission’s activities in 2020-2022 were presented in 4 publications, 9 information materials, 5 communications and 3 national conferences.



    CONTENTs
    2024 - 2004
    Select yearSelect issue