Agnieszka Wolska

Instrukcja obsługi aplikacji mobilnej

do obliczania potencjalnego narażenia pracowników na rozproszone promieniowanie nadfioletowe w procesach spawania łukowego

Materiały informacyjne CIOP-PIB

Instrukcja obsługi aplikacji mobilnej do obliczania potencjalnego narażenia pracowników na rozproszone promieniowanie nadfioletowe w procesach spawania łukowego

Opracowano na podstawie wyników IV etapu program wieloletniego "Poprawa bezpieczeństwa i warunków pracy", sfinansowanego w latach 2017-2019 w zakresie zadań służb państwowych przez Ministerstwo Rodziny, Pracy i Polityki Społecznej. Koordynator programu: Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy

Zadanie 1.G.13: Opracowanie narzędzia komputerowego do obliczania poziomu potencjalnego narażenia pracowników na rozproszone promieniowanie nadfioletowe w procesach spawania elektrycznego

Autor:

dr hab. inż. Agnieszka Wolska, prof. CIOP-PIB – Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Zakład Techniki Bezpieczeństwa, Pracownia Promieniowania Optycznego

Zdjęcie na okładce: bigstock

© Copyright by Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy Warszawa 2019

Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy ul. Czerniakowska 16, 00-701 Warszawa tel. (48-22) 623 36 98, www.ciop.pl

O aplikacji mobilnej

Aplikacja mobilna stworzona w Pracowni Promieniowania Optycznego CIOP-PIB służy do obliczania potencjalnego narażenia pracowników na rozproszone promieniowanie nadfioletowe w procesach spawania łukowego. Program został napisany w języku JAVA, w wersji zapewniającej poprawne działanie na urządzeniach wyposażonych w system operacyjny Android 7 lub nowszy.

Na świecie pojawiają się już podobne rozwiązania, jednak to jest pierwszą tego typu aplikacją dostępną w języku polskim. Głównym założeniem jej twórców było opracowanie narzędzia jak najbardziej przystępnego dla użytkownika. Wystarczy zaledwie kilka kroków (i okien), aby zdefiniować niezbędne parametry i otrzymać szacunkową wartość natężenia napromienienia na stanowisku pracy oraz informację, jak długo pracownik może w takim miejscu przebywać.

> Aplikację w wersji darmowej można pobrać ze strony: www.ciop.pl/CIOPPortalWAR/file/90263/2020070302056&weld.apk

Ekran startowy

Po zainstalowaniu i uruchomieniu aplikacji użytkownikowi zostanie przedstawiony ekran startowy (rys. 1), zawierający podstawowe informacje o programie oraz opcje nawigacji między kolejnymi etapami oceny.

Rys. 1. Ekran główny (po lewej) i jego widok po otwarciu menu głównego (po prawej)

Definiowanie parametrów

Po przejściu do okna oceny użytkownik ma możliwość wpisania parametrów niezbędnych do wykonania obliczeń. Są to:

- Wymiary pomieszczenia trzy pola tekstowe, których wartości muszą być liczbami rzeczywistymi dodatnimi, wyrażonymi w metrach. Tymi wymiarami są: długość pomieszczenia, jego szerokość oraz wysokość.
- Pozycja łuku spawalniczego trzy pola tekstowe określające pozycję punktu spawania (łuku spawalniczego) we współrzędnych XYZ względem punktu zerowego tego układu, wyrażone w metrach.
- Pozycja pracownika hipotetyczna pozycja oka pracownika, w odniesieniu do którego wykonywane są obliczenia. Trzy pola tekstowe, przyjmujące wartości rzeczywiste dodatnie, określają pozycję oka pracownika we współrzędnych XYZ względem punktu zerowego układu.
- Parametry osłony wysokość, szerokość i odległość określają pozycję osłony między pracownikiem a łukiem spawalniczym. Na podstawie punktów pracownika oraz łuku spawalniczego środek osłony jest ustawiany na najkrótszej prostej łączącej oba punkty, a sama osłona ustawiana jest prostopadle do podłogi.
- Parametry spawania parametry, zgodnie z którymi dokonuje się obliczeń promieniowania odbitego i bezpośredniego. W zależności od wybranych parametrów należy podać metodę spawania, a następnie wybrać prąd spawania oraz parametry opcjonalne (użytkownik nie zawsze będzie miał taką opcję wyboru po określeniu metody spawania), takie jak: materiał spawany, średnica elektrody, materiał dodatkowy czy gaz osłonowy. Opcjonalne parametry w ramach danej metody mogą się pojawić wszystkie jednocześnie, pojedynczo albo w grupach.
- Materiał ścian materiał, z którego zostały wykonane sufity, ściany i podłogi. Materiały ścian są wybierane dla każdej powierzchni z osobna. Użytkownik może więc przypisać różne materiały, z jakich zostały wykonane lub jakimi zostały pokryte powierzchnie ścian, sufitu i podłogi.
- Parametry opcjonalne jeżeli użytkownik ma własne wyniki pomiarów wykonanych na stanowisku pracy, wtedy może podać wartości natężeń napromienienia (*E*_s i *E*_{UVA}) oraz odległości pomiaru. Aby podczas obliczeń zostały uwzględnione parametry użytkownika, należy zaznaczyć pole: Uwzględnij poniższe parametry. Po wybraniu tej opcji możliwy będzie wybór parametrów spawania (rys. 2 i 3), a do obliczeń zostaną przyjęte parametry użytkownika.

Użytkownik musi wybrać i wpisać w odpowiednie pola wszystkie parametry. W przypadku pominięcia któregoś z nich proces obliczeń nie zostanie przeprowadzony poprawnie lub zostanie podany błędny wynik.

Wymiary po	mieszczenia
Szerokość (X)	12.0 [m]
Długość (Y)	16.0 [m]
Wysokość(Z)	6.0 [m]
Pozycja łuku	spawalniczego
Współrzędna X	4.0 [m]
Współrzędna Y	7.0 [m]
Współrzędna Z	1.0 [m]
Pozycja p	racownika
Współrzędna X	10.0 [m]
Współrzędna Y	12.0 [m]
Współrzędna Z	1.8 [m]
Paramet	try osłony
Szerokość	0.5 [m]

Rys. 2. Wybór parametrów geometrycznych i parametrów spawania, część górna

PLAY แl͡ŝ±	ው 🕲 i🗍 🎼 🖉 11:18	PLAY "⊯ີ 🧙 🛨	∽ ነር∥ ፻፬ ≠ 11:1
← Parametry	y i	← Parametry	r i
Wysokość	0.5 [m]	Wysokość	0.5 [m]
Odległość	1.5 [m]	Odległość	1.5 [m]
Parametry spawania		Parametry spawania	
Proces spawania MMA	*	Proces spawania MMA	Y
Materiał spawany Stal (ST3) 🔻	Materiał spawany Stal (S	ST3) 👻
Prąd spawania 90A	•	Prąd spawania 90A	w
Materiał ścian		Materiał ścian	
Sciana 1 Worktop blac	ĸ/white speckled 🔹	Sciana 1 Worktop black	/white speckled 🛛 👻
Sciana 2 Worktop black	ĸ/white speckled 🛛 👻	Sciana 2 Worktop black	/white speckled 👻
Sciana 3 Worktop black	κ/white speckled 🛛 👻	Sciana 3 Worktop black	/white speckled 🛛 👻
Sciana 4 Worktop black	κ/white speckled 🔹	Sciana 4 Worktop black	/white speckled 🛛 💌
Sufit Worktop black	k/white speckled 🛛 🔻	Sufit Worktop black	/white speckled 🛛 👻
Podłoga Worktop black	κ/white speckled ▼	Podłoga Worktop black	/white speckled 🛛 👻
Parametry opcjonalne		Parametry opcjonalne	
🗌 Uwzględnij poniższe	parametry	Uwzględnij poniższe	parametry
Es	0.0 [W/m*2]	Es	0.0 [W/m^2]
Euva	0.0 [Wm*2]	Euva	0.0 [Wm^2]
0.41	0.0 [m]	Odległość pomiaru	0.0 [m]

Rys. 3. Wybór parametrów geometrycznych i spawania, część dolna: aktywna część wyboru parametrów z bazy danych (po lewej) oraz wybór parametrów użytkownika (po prawej)

Weryfikacja geometrii

Po wybraniu wszystkich parametrów użytkownik może od razu przejść do obliczeń, jeśli ma pewność, że wszystkie elementy zostały poprawnie wybrane, albo sprawdzić, czy zadana geometria zgadza się z założeniami. Do tego celu stworzone zostało okno Przekroje.

W oknie Przekroje użytkownik może zobaczyć dwa przekroje pomieszczenia (rzut z góry i rzut z boku) wraz z położeniem łuku spawalniczego, obserwatora i przesłony. Użytkownik może zmienić pozycje obiektów (obserwatora G lub łuku Z), powracając do poprzedniego okna (Parametry) i wpisując nowe wartości lub przesuwając obiekty w docelowe miejsce za pomocą kursora (rysika lub palca w przypadku urządzeń z ekranem dotykowym). Pozycje obiektów automatycznie się zmieniają na rzutach pomieszczenia. Na rys. 4 pokazano okna przekrojów przed przesunięciem, podczas przesunięcia i po przesunięciu łuku oraz osłony. Te okna realizują hipotetyczną sytuację przedstawioną na rys. 5.

Rys. 4. Przesunięcie elementów (przesłony i łuku) na przekroju: a) przed przesunięciem, b) podczas przesuwania, c) po przesunięciu

Rys. 5. Widok przestrzenny umiejscowienia elementów. Elementem dodatkowym jest spawacz, pomijany w obliczeniach

Obliczenia

Okno Obliczenia ma własne opcje, pozwalające na zarządzanie procesem obliczeń:

- Start uruchamia proces obliczeń na podstawie parametrów przyjętych przez użytkownika
- Stop zatrzymuje proces obliczeń, jeżeli trwają one zbyt długo i zachodzi potrzeba ich przerwania
- Wznów wznawia uprzednio wykonywane obliczenia.

Aplikacja prezentuje następujące wyniki (rys. 6):

- natężenie napromienienia skuteczne aktynicznie (*E*_s) składową bezpośrednią i odbitą oraz ich sumę
- natężenie napromieniania promieniowaniem UVA (*E*_{UVA}) składową bezpośrednią i odbitą oraz ich sumę
- dopuszczalny czas ekspozycji, w odniesieniu do *E*s osobno, w odniesieniu do warunków z przesłoną lub bez niej.

Otrzymane wyniki można skopiować i wkleić jako notatkę, wysłać mailowo lub zapisać w formie tekstowej.

PLAY 📲 🖬		성	≶ (◯ 1□1 1060 ⊄ 08:47
Obliczen	ia		
Wymiary	pomieszcz	enia	
Szerokość Długość Wysokość	12.0[m] 16.0[m] 6.0[m]		
Suma wartoś odbitego: U dochodzącego Euva = 0.01 Es = 0.000	ci natężeń /A i skute o do oczu 70274 [W/m 45719 [W/m	napromi cznego a pracowni ^2] ^2]	enienia ktynicznie ka:
Wartość nato bezpośrednio aktynicznie pracownika Euva = 0.068 Es = 0.019	ężenia nap ego: UVA i docierają 39487 [W/m 97112 [W/m	romienie skuteczn cego do ^2] ^2]	nia nego oczu
Całkowita wa UVA i skute to oczu pra Euva = 0.08 Es = 0.024	artość nat sznego akt cownika 59761 [W/m 42831 [W/m	ężenia n ynicznie ^2] ^2]	apromienienia docierającego
Dopuszczaln 1. Bez przes 2. Z przesło	/ czas eks słony Ts = oną Ts =	pozycji 0:20:35 1:49:21	
	\triangleleft (C	

Rys. 6. Wynik przykładowego raportu z wykonanych obliczeń