Narażenie podróżujących na drgania i hałas w zależności od rodzaju środka transportu – wyniki badań pilotażowych

Travellers’ exposure to vibrations and noise depending on the type of transport – the results of pilot research

For some time residents of big cities have been encouraged to change their means of transport, that is, to swap passenger cars for public transport vehicles. This is meant to help to reduce the problems associated with heavy traffic and air pollution. The authors of the article decided to check if such a change is also beneficial from the point of view of comfort and health of a person who uses public transport. For this purpose values of vibration acceleration and sound pressure level to which Cracow’s commuters are exposed to have been analyzed, depending on the type of vehicle they choose. In this respect measurements have been carried out for passenger cars, buses and trams. Two vehicle models of each type, significantly different from each other (old and new) have been selected for the tests. The measurements during a few trips in each type of vehicle on a predetermined route have been conducted. This article presents a comparison of measured values of vibroacoustic parameters in the time domain. It attempts to assess vibration and noise parameters, taking into account their impact on the health and comfort of the traveler.

Keywords: vibration hazard, noise hazard, vibration and noise for commuters

Wstęp

W Krakowie zarejestrowanych jest ponad 480 tys. samochodów, co daje 633 pojazdów na 1000 mieszkańców i jest jednym z najwyższych wyników w kraju [1]. Oczywiście spora ich część nie jest użytkowana codziennie, ale należy pamiętać również o pojazdach zarejestrowanych poza Krakowem, a codziennie wyjeżdżających do miasta. Niemal pół miliona aut poruszających się codziennie po Krakowie przyczynia się do zanieczyszczenia powietrza substancjami potocznie nazywanymi smogiem [1,2]. Lokalne władze nawołują więc do zamiany samochodów na środki komunikacji miejskiej w celu zneutralizowania poziomu zanieczyszczeń oraz zmniejszenia korków na Krakowskich ulicach.

Często przemieszczanie się po Krakowie ma na celu podróż o charakterze służbowym. W związku z tym zasadne jest oceniać je z punktu widzenia ochrony zdrowia i bezpieczeństwa pasażera. W Polsce regulacje dotyczące bhp odnoszą się do bhp i ergonomii, a także sposobu wykonywania pracy, jednak jej nieodłącznym elementem jest podróż do i z miejsca pracy. W tym aspekcie również powinniśmy pamiętać o świadomym wyborze środka transportu, aby do minimum ograniczyć zagrożenia, na które możemy być narażeni.

Autorzy postanowili przyjrzeć się temu problemowi pod kątem narażenia na drgania i hałas. Wykonane zostały badania pilotażowe, których celem było określenie, który środek transportu generuje większe drgania i hałas. Podobne badania dotyczące tramwajów zostały przedstawione w pracy opublikowanej w 2011 r. [3]. Natomiast ocena narażenia na hałas i drgania na kierowców drogowych znaleźć można w artykule z 2007 r. [4].

W ekstremalnych przypadkach drgania mogą prowadzić do zwrodnień stawów i nieodwracalnych zmian w układach: krwiozmyśnym, naczyniowym i nerwowym, co może prowadzić do choroby zawodowej zwanej zespołem wibracyjnym [5-7]. Autorzy potrafili również w podróży o charakterze służbowym jako jedno z zajęć służ...
Drgania i hałasa jako zagrożenie dla zdrowia – wartości dopuszczalne

Drgania i hałasa mogą mieć negatywny wpływ na zdrowie człowieka, szczególnie gdy ich działanie jest długotrwałe i powtarzalne, a wartości ekspozycji przekraczają wartości dopuszczalne określone w rozporządzeniach. Narzanie na te czynniki może prowadzić również do zmniejszenia wydajności pracy ze względu na: zmęczenie, zakłócenie czasu reakcji i koordynacji, niepokój, rozdrażnienie.

Nadmierna ekspozycja na drgania może prowadzić do choroby lokomocyjnej, a w ekstremalnych przypadkach do zespołu wibracyjnego [5]. Z kolei nadmierna ekspozycja na hałas może prowadzić do trwałego przeniesienia progu słyszalności.

Mając na celu zapobieganie i kontrolę ekspozycji na drgania i hałas, określono wartości, których przekroczenie może być niebezpieczne dla zdrowia człowieka oraz określające odczucie komfortu osoby podróżującej. Przedstawiono je w tab. 1. 3. Ze względu na brak regulacji prawnych nt. wartości dopuszczalnych drgań, dotyczących pasażerów komunikacji miejskiej, postawiono się tymi, które dotyczą zagrożeń w środowisku pracy.

Metoda pomiarowa

Pomiar wykonano w Krakowie w kwietniu 2017 r. na dwóch trasach (rys. 1.), dobrych tak, aby usunięcie wyniku pomiaru miało charakter reprezentatywny w odniesieniu do badanego pojazdu (autorzy wymagali ok. 15 minut podróży). Decyzja o wyborze dwóch tras została podjęta z powodu braku możliwości znalezienia jednej, którą podróżować był zarówno autobusy, jak i tramwaje. Wybrane odcinki, pomimo znacznie różnicujących się warunków pomiarowych dla tramwajów i pojazdów kołowych, reprezentują typowe warunki podróży dla każdego z tych środków transportu. Stan torowisk i dróg tych tras był porównywalny. Priorytetem było odzorowanie przykładowej podróży, którą wykonuje mieszkańcy Krakowa, który porusza się komunikacją miejską lub samochodem w celach służbowych. Zaznaczyć trzeba, że pomiar wewnątrz samochodów osobowych odbywali się na tej samej trasie, na której jeździły autobusy.

Badania wykonywano w godzinach 9:00-13:00 w celu uniknięcia godzin szczytowych ze względu na dużą ilość aparatury pomiarowej. Wypełnienie badanych środowisk transportu wynosiło ok. 20-30% (zależnie większości miejsc siedzących). Prędkość autobusów wynosiła 13-21 km/h, samochodów osobowych: 12-20 km/h, a tramwajów: 11-16 km/h. Temperatura powietrza mieściła się w zakresie 5-7 °C, a ciśnienie atmosferyczne w zakresie 1018-1031 hPa. Nie zanotowano opadów.

Pomiar przeprowadzono w sumie w 7 różnych pojazdach: 2 samochodach osobowych, 2 tramwajach i 3 autobusach [fot. 1, 3]. Auto dobrano tak, aby wziąć pod uwagę zarówno relatywnie starsze (lata 90. ub. wieku), jak i nowsze generacje pojazdów (samochód mający 10 lat). Jeden z autobusów napędzany silnikiem diesel, a pozostałe posiadające jednostki hybrydowe. Istotne informacje na temat każdego modelu przedstawiono w tab. 1.

Materiał badawczy to osobno zarejestrowane przebiegi czasowe przyspieszeń drgań ogólnych oraz skorygowane wartości poziomów ciśnienia akustycznego wymienionych pojazdów. Wykonano pomiary 2-3 przejazdów całej trasy przez każdy z modeli.

Do pomiarów przyspieszenia drgań wykorzystano trójsiecznik piezoelektryczny, zamontowany w dysku umieszczonym na fotelu pasażera, podłączony do pośrednictwem kablów pomiarowych do komputera. Dysk z czujnikiem montowany był do siedzenia przy użyciu pasów mocujących. Do pomiarów hałasu wykorzystano miernik poziomu dźwięku klasy 1.

Tabela 4. Zestawienie poszczególnych parametrów badanych pojazdów wg danych producentów. Indeksami „S”, „N” oznaczono modele odpowiednio starsze i nowszej generacji; indeksami „A”, „T”, „D” odpowiednio autobusy, tramwaje i samochody osobowe.

<table>
<thead>
<tr>
<th>Model</th>
<th>Silnik</th>
<th>Użytkowanie silnika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jelcz M121MB</td>
<td>12040</td>
<td>Diesel 1997 cm³, 194 kW (250 KM) /2200 obr./min, 1000 Nm/1000 obr./min</td>
</tr>
<tr>
<td>Solaris Urbino Hybrid</td>
<td>15500</td>
<td>Diesel hybrydowy 10837 cm³, 240 kW /326 KM /700 obr./min, 1400 Nm (850 - 1600) /obr./min</td>
</tr>
<tr>
<td>Mercedes-Benz O 530 CDA</td>
<td>16625</td>
<td>Diesel hybrydowy 11976 cm³, 260 kW /356 KM /2000 obr./min, 1600 Nm/1000 obr./min</td>
</tr>
<tr>
<td>Bombardier E1P</td>
<td>24000 (pojedynczy wagon)</td>
<td>2 x 150 kW</td>
</tr>
<tr>
<td>PESA Twist 2014N (Krakowski)</td>
<td>64036 (pojedynczy wagon)</td>
<td>6 x 105 kW</td>
</tr>
<tr>
<td>Mercedes W124 250D</td>
<td>1390 kg</td>
<td>Diesel 24937 cm³, 94 KM (69 kW) /4600 obr./min, 158 Nm / 2600 obr./min</td>
</tr>
<tr>
<td>Opel Astra H</td>
<td>1210 kg</td>
<td>Benzyna 1796 cm³, 125 KM (92 kW) /5600 obr./min, 170 Nm/3800 obr./min</td>
</tr>
</tbody>
</table>

Indeksami „S”, „N” oznaczono modele odpowiednio starsze i nowszej generacji; indeksami „A”, „T”, „D” odpowiednio autobusy, tramwaje i samochody osobowe.

(1,4a, 1,4a, 1,4a). Zastosowano filtr WK (drgania ogólne w osi Z) i Wd (drgania ogólne w osiach X i Y). Wyznaczono również poziom dyskomfortu, przyjmując za podstawę wartości skuteczne sum węglowych przyspieszenia drgań, zgodnie z normą ISO 2631 [5]. Wykorzystana została metoda pomiarowa oparta na pomiarach stanowiowskich, opisana w PN-EN ISO 9612:2011 [13].

Do oceny hałasu wykorzystano następujące parametry: L_{eq} (maksymalny poziom dźwięku A), $L_{p,\text{np}}$ (szczytowy poziom dźwięku C) oraz L_{eq}, (poziom ekspozycji odniesiony do 8-godzinnego dobowego lub przebytego tygodniowego, określonego w Ko- deksie pracy, wymiaru czasu pracy) [8]. Pomiary wykonywano w miejscach możliwie odległych od dróg wejściowych, żeby często powtarzający się proces wsiadania i wysiadamia pasażerów z pojazdu w jak najmniejszym stopniu zaburzał ich wyniki. Starano się również zachować jak największą odległość od twardych, odbijających dźwięk powierzchni, głównie wewnętrz kabin pojazdu. We wszystkich pomiarach uczestniczyła ta sama, siedząca osoba o masie ciała 55 kg.

Wyniki pomiarów

Porównania wyników pomiarów zaprezentowano osobno w odniesieniu do drgań i hałasu. Zmierzone wartości dotyczą pełnych, zarejestrowanych przejazdów, trwających nieco ponad 15 minut. Dane w kolumnach w tab. 5. i 7. prezentują wartości uśrednione ze wszystkich pomiarów danego modelu pojazdu. Trasa pokonywana przez auta i autobusy różni się od trasy tramwajów, ale założeniem badania było sprawdzenie wyników pomiarów podczas podróży wybranymi pojazdami z punktu A do punktu B. Pośrednio porównanie, zatem, zdań autorów, dozwolone. Porównane zostały również między sobą wyniki pomiarów różnych przejazdów tym samym pojazdem, ale nie wykazały one istotnych różnic.

Podczas pomiaru drgań brano pod uwagę wartości skuteczne przyspieszeń drgań ogólnych (przenoszonych głównie przez miednicę, kręgosłup, końcowe dolne), mierniki w paśmie 0.5-80 Hz. Ekspozycja krótkotrwała (suma czasów dwóch przejazdów w ciągu dnia) nie przekraczała 30 min. Na jej podstawie dokonano oceny dyskomfortu jazdy (tab. 5. i 6.).

W przypadku większości pojazdów nie zostały przekroczone wartości dopuszczalne dla krótkotrwałej ekspozycji na drgań. Należy jednak zwrócić uwagę na dwa przypadki: Jelcz M121MB oraz Solaris Urbino Hybrid (miejsce przegubu). Dotyczą one wartości skorygowanych przyspieszeń drgań przekraczających wartości dopuszczalne dla osób młodszych (tabl. 5.) w odniesieniu do środowiska pracy. Należy zaznaczyć, że konieczne są dalsze badania w tym zakresie.

Z kolei w przypadku hałasu (tab. 7.), najwyższe wartości parametru L_{eq}, odnotowano w autobusie Jelcz M121MB oraz tramwaju PESA Twist 2014N (Krakowski). Podobne postrzeżenie odnosi się do wyników badań w odniesieniu do po- miaru parametru L_{eq}, w tych samych pojazdach osiąga on najwyższe wartości, istotnie większe od zmierzonych wewnątrz pozostałych obiektów badań. Na podstawie obliczeń poziomu średnio- równozw. L_{eq}, nawet najwyższa wartość zarejestrowana w autobusie Jelcz była niższa o 22 dB od wartości dopuszczalnej dla osoby dorosłej, o 17 dB dla kobiety w ciągu oraz o 2 dB dla osoby młodocianej. Wewnętrz pozostałych pojazdów komunikacji miejskiej otrzymać złożone rezultaty pomiaru L_{eq}, Zależność trzeba, że wartość L_{eq}, była niższa od 75 dB w Obu Astry H, a wartość L_{eq}, 124 sytuowała się poniżej 60 dB w odniesieniu do obu badanych samochodów. W żadnym przypadku nie doszło do przekroczeń wartości dopuszczalnych.
Tabela 5. Zestawienie skutecznych, skorygowanych wartości przyspieszeń dźwięków w trzech kierunkach z uwzględnieniem niepewności rozszerzonej

<table>
<thead>
<tr>
<th>Nazwa pojazdu</th>
<th>(1,4a_{eq}[^{[m/s^2]}]) kierunek X</th>
<th>(1,4a_{eq}[^{[m/s^2]}]) kierunek Y</th>
<th>(a_{con}[^{[m/s^2]}]) kierunek n/2</th>
<th>Wartości dopuszczalne dla osób dorosłych ([^{[m/s^2]}])</th>
<th>Wartości dopuszczalne dla osób młodocianych ([^{[m/s^2]}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jelcz M121MB</td>
<td>1,08 ±0,04</td>
<td>1,08 ±0,03</td>
<td>0,69 ±0,02</td>
<td>3,2</td>
<td>0,76</td>
</tr>
<tr>
<td>Solaris Urbino 18 Hybrid (miejsca z dala od przegubu)</td>
<td>0,22 ±0,02</td>
<td>0,20 ±0,02</td>
<td>0,31 ±0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solaris Urbino 18 Hybrid (miejsce przy przegubie)</td>
<td>0,74 ±0,03</td>
<td>0,74 ±0,04</td>
<td>0,67 ±0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercedes-Benz O 530 G</td>
<td>0,25 ±0,02</td>
<td>0,24 ±0,03</td>
<td>0,41 ±0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombardier E1</td>
<td>0,13 ±0,02</td>
<td>0,11 ±0,02</td>
<td>0,23 ±0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PESA Twist 2014N (Krakowik)</td>
<td>0,11 ±0,02</td>
<td>0,11 ±0,02</td>
<td>0,13 ±0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercedes W124 250D</td>
<td>0,26 ±0,03</td>
<td>0,19 ±0,02</td>
<td>0,35 ±0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opel Astra H</td>
<td>0,25 ±0,02</td>
<td>0,20 ±0,02</td>
<td>0,26 ±0,02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6. Przyporządkowanie poziomów dyskomfortu do poszczególnych pojazdów na podstawie sumy wektorowej skutecznego, skorygowanych wartości przyspieszeń dźwięków z uwzględnieniem niepewności rozszerzonej

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jelcz M121MB</td>
<td>1,47 ±0,05</td>
<td>niewygodnie – bardzo niekomfortowo</td>
</tr>
<tr>
<td>Solaris Urbino 18 Hybrid (miejsca z dala od przegubu)</td>
<td>0,40 ±0,02</td>
<td>mały dyskomfort</td>
</tr>
<tr>
<td>Solaris Urbino 18 Hybrid (miejsce przy przegubie)</td>
<td>1,11 ±0,07</td>
<td>niewygodnie</td>
</tr>
<tr>
<td>Mercedes-Benz O 530 G</td>
<td>0,54 ±0,04</td>
<td>mały dyskomfort – dość niewygodnie</td>
</tr>
<tr>
<td>Bombardier E1</td>
<td>0,26 ±0,03</td>
<td>brak dyskomfort</td>
</tr>
<tr>
<td>PESA Twist 2014N (Krakowik)</td>
<td>0,21 ±0,02</td>
<td>brak dyskomfort</td>
</tr>
<tr>
<td>Mercedes W124 250D</td>
<td>0,44 ±0,04</td>
<td>mały dyskomfort</td>
</tr>
<tr>
<td>Opel Astra H</td>
<td>0,38 ±0,02</td>
<td>mały dyskomfort</td>
</tr>
</tbody>
</table>

Tabela 7. Zestawienie wartości zmiennych parametrów hałasu wewnątrz badanych pojazdów z uwzględnieniem niepewności rozszerzonej

<table>
<thead>
<tr>
<th>Nazwa pojazdu</th>
<th>(L_{Aeq}[^{[dB]}])</th>
<th>(L_{Aeq}[^{[dB]}])</th>
<th>(L_{Aeq}[^{[dB]}])</th>
<th>(L_{Aeq}[^{[dB]}])</th>
<th>(L_{Aeq}[^{[dB]}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jelcz M121MB</td>
<td>87,2 ±2,3</td>
<td>112,1 ±2,3</td>
<td>70,6 ±2,3</td>
<td>60,3 ±2,3</td>
<td>60,3 ±2,3</td>
</tr>
<tr>
<td>Solaris Urbino 18 Hybrid</td>
<td>79,3 ±3,1</td>
<td>111,3 ±3,1</td>
<td>67,7 ±3,1</td>
<td>55,7 ±3,1</td>
<td>55,7 ±3,1</td>
</tr>
<tr>
<td>Mercedes-Benz O 530 G</td>
<td>81,8 ±2,8</td>
<td>112,7 ±2,8</td>
<td>66,7 ±2,8</td>
<td>54,7 ±2,8</td>
<td>54,7 ±2,8</td>
</tr>
<tr>
<td>Bombardier E1</td>
<td>80,1 ±2,2</td>
<td>112,5 ±2,2</td>
<td>63,5 ±2,2</td>
<td>53,3 ±2,2</td>
<td>53,3 ±2,2</td>
</tr>
<tr>
<td>PESA Twist 2014N (Krakowik)</td>
<td>89,6 ±2,0</td>
<td>117,4 ±2,0</td>
<td>68,7 ±2,0</td>
<td>55,8 ±2,0</td>
<td>55,8 ±2,0</td>
</tr>
<tr>
<td>Mercedes W124 250D</td>
<td>81,1 ±1,6</td>
<td>114,4 ±1,6</td>
<td>59,0 ±1,6</td>
<td>47,0 ±1,6</td>
<td>47,0 ±1,6</td>
</tr>
<tr>
<td>Opel Astra H</td>
<td>74,5 ±1,2</td>
<td>113,9 ±1,2</td>
<td>57,7 ±1,2</td>
<td>45,7 ±1,2</td>
<td>45,7 ±1,2</td>
</tr>
</tbody>
</table>

Na wykresach zaobserwowano można duże różnice w wartościach parametrów hałasu między poszczególnymi rodzajami pojazdów. Zestawienie z rys. 3. świadczy o tym, że w przypadku pojazdów generujących najniższe poziomy ciśnienia akustycznego, jedynie \(L_{Aeq}\) jest parametrem znacząco odróżniającym (>8 dB) samochody osobowe od pojazdów komunikacji miejskiej. Porównanie średnich wartości wypadła na korzyść samochodów osobowych, w których generowany poziom ciśnienia akustycznego był o 0,7-8,5 dB niższy, niż w komunikacji miejskiej. Z kolei różnice w wynikach \(L_{Aeq}\) mieszczą się w zakresie 0,3-2,4 dB, ponownie na korzyść samochodów osobowych.

W przypadku porównania pojazdów zestawionych w rys. 6. ukazują się znaczne różnice (8-14 dB) w wartościach obu parametrów. We wszystkich samochodach osobowych zastosowano wyraźnie niższe poziomy dźwięku, niż w autobusie czy tramwaju. W odniesieniu do parametrów \(L_{Aeq}\) są to różnice 9,7-14,6 dB, a w przypadku \(L_{Aeq}\), 8,3-8,9 dB.
Podsumowanie

Zbadana grupa pojazdów jest zbyt mała, by nazwać ją reprezentatywną, jednak można na jej przykładzie wyciągnąć wstępne wnioski.

Spośród analizowanych przypadków, najmniej niekorzystne pod względem narażenia na drgania okazały się tramwaje. Mniej korzystne wartości uzyskano w autach. Wyniki pomiarów przyspieszeń dźwięku w odniesieniu do osiągnięcie przez odpowiednie środki transportu pozwalają stwierdzić, że podróże odbywają się co najwyżej z małym dyskomfortem.

Inaczej jest w przypadku autobusów, w których wykonane pomiary uświadomili przekroczenia wartości dopuszczalnych (odniesienie do warunków w środowisku pracy), co odnosi się stosunkowo dużym dyskomfortem podróży. Nawet w kilkudziesięciominutowym okresie jazdy może to stanowić zagrożenie dla osób młodszych i kobiet w ciąży.

Uwaga ta odnosi się zwłaszcza do starszych generacji autobusów i miejsc przy przegubie. Na szczęście w ostatnich latach pojazdy te są przez MPK Kraków sukcesywnie zastępowane nowymi, o poziomie komfortu jaźni porównywalnym z samochodem osobowym. Warto podkreślić, że w odniesieniu do wymiaru pracy, wyniki sprawdzonej średnicy hałasu, jak również jego rozmiar w pasażerowie czyśćce zewnętrzne. W przeważającym twice wartości te mogą być podobne, a nieodkrywają nawet wyższe od wartości notowanych w autobusach.

Trzeba też pamiętać, że badania zostały przeprowadzone na jednej trasie i jedynie w kilku pojazdach, dlatego też wyniki mogą być uznane jako wartości reprezentatywne dla całych grup danych pojazdów. W ogra jednak wątpliwości, że społeczeństwo powinno mieć większą świadomość zagrożeń drganiami i hałasem, których źródłem mogą być między innymi pojazdy, którymi codziennie się poruszamy.

BIBLIOGRAFIA

[8] Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dnia 12 czerwca 2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. Dz.U. 2018 poz. 1286
[9] Obwieszczenie Prezesa Rady Ministrów z dnia 29 sierpnia 2016 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Rady Ministrów w sprawie wykazu prac wzbudzających poważne choroby i obrażenia przy których pracę Dz.U. 2016 poz. 1509
[10] Rozporządzenie Rady Ministrów z dnia 3 kwietnia 2017 r. w sprawie wykazu prac wzbudzających poważne choroby i obrażenia przy których pracę Dz.U. 2017 poz. 795

Artykuł powstał w ramach subwencji z Ministerstwa Nauki i Szkolnictwa Wysszego nr 16.16.130.942/KMW.