

Virtual Reality Support for Human Factors in Human-System Interaction

Peter Nickel

OSH InnoTech Conference Novel Technological Innovations for Occupational Safety and Health CIOP-PIB, Warsaw, Poland, 15/10/2019

Agenda

- DGUV and IFA
- Virtual Reality
- Human Factors, Human-System Interaction
- VR projects
- Application areas
- Conclusions

German Social Accident Insurance – Independent Institutions

German Social Accident Insurance – Research Institutes

Research / Consultation / Testing Carrier: DGUV

Focus: Technology, chemical/biological

- hazards
- · Accident prevention
- · Machine safety
- Personal protective equipment
- Substance and exposure data

Research / Lecturing / Advice Carrier: DGUV + BG RCI

Focus: Occupational medicine

- Medicine
- Epidemiology
- Allergology / Immunology
- Toxicology
- · Molecular medicine

Research / Consultation / Qualification

Carrier: DGUV

Focus: Qualification in OSH

- · Psychological damage and health
- Work design and demographics
- Evaluation
- · Learning and use of electronic media
- Road safety
- Profitability and business management

Virtual Reality and OSH

- Simulation technique to support research into OSH
- Allows to study in hazardous and future environments

Human Factors in Human-System Interaction

- Research and application of human requirements to improve working conditions
- Information exchange processes referring to task, interaction and information interfaces

[Photo: Nickel/IFA]

Human-System Interaction in OSH

www.dguv.de/ifa/sutave

SUTAVE – Safety and Usability Through Applications in Virtual Environments

[FFFP279] 2009

2010

[IFA5110]

2011

[IFA5115] [IFA5116] 2012

[IFA5118a] 2013 2014 [IFA5118b] 2015

[IFA5122]

2016

[IFA5129]

[IFA5135] [IFA5146]

2019

[IFA5112]

[IFA5126]

[IFA5127]

[IFA5130]

[IFA5138]

[IFA5141]

2017

[IFA5142]

2018

[IFA515x]

HF/E, **EngPsy**

DGUV

SUTAVE – Safety and Usability Through Applications in Virtual Environments

 Design of work processes and products (simulation technique, research tool, testing environment)

Training (medial support)

Visualisation (design reviews)

- ... through Development and Design Reviews of Safety Concepts (e.g. protecting future workplaces using 3D zone monitoring)
- ... in Future Work Environments Not Yet Available (e.g. human information processing in human-robot interaction)
- ... in Hazardous Work Environments (e.g. usable safety measures for elevating work platforms)
- ... by Prevention Through Design (e.g. risk assessments during river lock planning stage)
- ... when supporting Training in OSH (e.g. qualification modules for risk assessment of machinery)

[Pictures: IFA]

[Photo: Lungfiel/IFA]

Assessing New Technologies and Developing Safety Concepts

- Human perception and processing of 3D safety areas of Electro-sensitive protective equipment (ESPE) in context of use
- Minor differences in safety distances when using 2D and 3D safety areas
- Use of VR for development of safety concepts e.g. in manufacturing
- Project IFA5116 (DGUV Expert Committee "Woodworking and Metal Industries",

- ... through Development and Design Reviews of Safety Concepts (e.g. protecting future workplaces using 3D zone monitoring)
- ... in Future Work Environments Not Yet Available (e.g. human information processing in human-robot interaction)
- ... in Hazardous Work Environments (e.g. usable safety measures for elevating work platforms)
- ... by Prevention Through Design (e.g. risk assessments during river lock planning stage)
- ... when supporting Training in OSH (e.g. qualification modules for risk assessment of machinery)

[Pictures: IFA]

[Photo: Lungfiel/IFA]

Human Information Processing in Human-Robot Interaction

Human Factors design requirements in human-robot interaction

VR simulation for design of collaboration/interaction areas

· Behavioural effects of robot speed, distance and trajectory

 Behavioural effects of human-robot task-fit and indication of interaction demand

MSc thesis (Psychology, University of Bonn)

[Kaufeld & Nickel 2019, LNCS]

- ... through Development and Design Reviews of Safety Concepts (e.g. protecting future workplaces using 3D zone monitoring)
- ... in Future Work Environments Not Yet Available (e.g. human information processing in human-robot interaction)
- ... in Hazardous Work Environments (e.g. usable safety measures for elevating work platforms)
- ... by Prevention Through Design (e.g. risk assessments during river lock planning stage)
- ... when supporting Training in OSH (e.g. qualification modules for risk assessment of machinery)

[Pictures: IFA]

[Photo: Lungfiel/IFA]

SAFETY SCIENCE

Product Safety and Usability in Hazardous Situations

Usability evaluation of additional safety measures before marketing;
investigations in hazardous situations without placing operators in danger

Recommendation: redesign of safety measures built into joysticks

 Project IFA5118 (DGUV Expert Committee "Trade and Logistics", BGHM, BGHW)

- ... through Development and Design Reviews of Safety Concepts (e.g. protecting future workplaces using 3D zone monitoring)
- ... in Future Work Environments Not Yet Available (e.g. human information processing in human-robot interaction)
- ... in Hazardous Work Environments (e.g. usable safety measures for elevating work platforms)
- ... by Prevention Through Design (e.g. risk assessments during river lock planning stage)
- ... when supporting Training in OSH (e.g. qualification modules for risk assessment of machinery)

[Pictures: IFA]

[Photo: Lungfiel/IFA]

Prevention Early in Planning and Development

- Risk assessment support early in design
- Assessments according to EU Directives
 - Machinery Directive 2006/42/EC
 - OSH Framework Directive 89/391/FFC
 - Construction Site Directive 92/57/FFC
- Design improvements and template development for assessments in reality
- OSH by PtD in river lock standardisation
 - dynamic VR simulation of future river lock
 - OSH assessments in context of use
 - risk reduction during planning stage
- Project IFA5135 (UVB, BMVI, BG Verkehr etc.)

Shaping Future Work Systems by OSH Risk Assessments Early On Potor Nickel¹⁴⁷¹, Markus Janning², Thilo Wachholz Social Accident Insurance (IFA), State Augustin, Germa

Nickel et al. 2019 IEA

15

- ... through Development and Design Reviews of Safety Concepts (e.g. protecting future workplaces using 3D zone monitoring)
- ... in Future Work Environments Not Yet Available (e.g. human information processing in human-robot interaction)
- ... in Hazardous Work Environments (e.g. usable safety measures for elevating work platforms)
- ... by Prevention Through Design (e.g. risk assessments during river lock planning stage)
- ... when supporting Training in OSH (e.g. qualification modules for risk assessment of machinery)

[Pictures: IFA]

[Photo: Lungfiel/IFA]

Systematic Development of VR Training Environments

- Develop, integrate and evaluate VR module in training courses on risk assessment
- VR media support for qualification contents
- foster self-directed and experience-based learning
- Risk identification, assessment and reduction
- Project IFA5146 (BGN, HSK)
- Human Factors concept for SDVE: Structured Development of Virtual Environments

Concept

gramming

Specifi-

Require-

Project

Imple-

mentation

Conclusions

- Safety and Usability Through Applications in Virtual Environments (SUTAVE)
- VR is a tool that becomes alive through the application context
- Human Factors concept on SDVE is crucial for prevention in OSH context
- VR support for training calls for simulation plus an educational concept
- VR extends the effective range of prevention through design (PtD)

SUTAVE

Safety and Usability through Applications in Virtual Environments

Virtual reality in occupational safety and health

Thank you very much for your attention!

Virtual reality in human-syste

What is virtual reality?

Zoom Image Q

Study of the efficacy of a protective

In VR (virtual real with a simulated experience realis simulated install equipment in a They are subme environment, a through their se information with change the virtual expers are able to

www.dguv.de/ifa/sutave

