Zastosowanie techniki skanowania 3D do pomiaru stóp (2)

Wstęp

Właściwe dopasowanie obuwia do kształtu stopy pracownika jest niezmiernie istotne z punktu widzenia zdrowia człowieka [3-7, 9]. Ocena dopasowania wyrobów obuwicznych do wymiarów antropometrycznych użytkowników powinna uwzględniać ułożenie elementów konstrukcyjnych obuwia na stopie użytkownika po uprzednim ich dopasowaniu i wyregulowaniu. Obuwie charakteryzuje się pewną elastycznością, zapewniającą jego użytkownikom dopasowanie i właściwą ochronę.

Nowo wyprodukowane obuwia wykazuje jednak zazwyczaj istotne odstępstwa od anatomicznego kształtu stopy i przyjmuje właściwy kształt dopiero po jednorodnym założeniu lub nawet kilkukrotnym użyciu.

W związku z tym ocena dopasowania obuwia ochronnego do wymiarów stóp użytkowników ma sens w przypadku porównania ich wymiarów antropometrycznych do wielkości wzorców w postaci „kopyt”, stosowanych jako matryce do wytwarzania obuwia przez producentów nie są jednakowe, stąd różnica w rozmiarach obuwia dostępnych na rynku [10].

Ocena dopasowania

W przedstawionym w artykule sposobie oceny dopasowania wyrobów obuwicznych do wymiarów antropometrycznych użytkowników za podstawę przyjęto porównanie zarejestrowanych wymiarów antropometrycznych stóp użytkowników z trzema modułami kopyt obuwia strażackiego stosowanego przez większość grupy strażaków-ratowników [4]. W celu określenia największego podobieństwa stopy badanego ochotnika do zastosowanych wzorców stóp wykorzystano analizę skupień (ang. cluster analysis).
Rys. Wyznaczanie obwodu przedostatia na podstawie skanu 3D „kopyta”: na przykładzie rozmiaru nr 8
Fig. Determining prefoot perimeter on the basis of a 3D scan of a foot model: on the example of size 8

analizy, polegającą na określaniu największych podobieństw ze zbioru użytkowników, a następnie przypisanie ich do ustalonych grup (3 grupy stóp identyfikowanych na podstawie 15 równowazonych parametrów, przedstawionych w pierwszej części artykułu). Użyto w tym celu algorytmu hierarchicz- nego, którego istotą jest grupowanie ochotników w zbiorze z zastosowaniem miary podobieństwa wyznaczanej przez wzorce.

Następnie zastosowano metodę Wardana, wykorzystującą – przy wyodrębnianiu skupisk – zasadę minimalizacji wariancji.

Ocena dopasowania kopyt do stóp

Wykorzystane w przeprowadzonych badaniach „kopyta” uwzględniały wzór o trzech rozmiarach: 8, 10 i 12. W odniesieniu do egzemplarzy każdego z nich uzyskano obrazy cyfrowe za pomocą skanowania 3D, a następnie zmierzono parametry antropometryczne stóp ochotników biorących udział w badaniach, zgodnie z metodą przyjętą i opisaną w pierwszej części artykułu. Przykład zdjęć obrazujących „kopyta” oraz pomiar obwodu przedostatnia przedstawiono na rysunku.

Analiza wyników badań przeprowadzonych na grupie 55 osób, wykazała następującą przynależność pod względem wymiarów stopy:

- wzór „kopyta” o rozmiarze 8 – 9 strażaków- ratowników
- wzór „kopyta” o rozmiarze 10 – 34 strażaków- ratowników
- wzór „kopyta” o rozmiarze 12 – 12 strażaków- ratowników.

Ocena dopasowania obuwia do wymiarów stóp z zastosowaniem wymienionych „kopyt” pokrywa się z zaproponowaną numeracją w załączniku C do PN-EN ISO 20344:2012 [8], gdzie stopniowanie wymiarów obuwia według długości we Francji (FR) i Anglii (UK) określa tabela 1. Przeprowadzony w ramach oceny wymiarów stóp wywiad z uczestnikami badań na temat komfortu użytkowania obuwia (przed i po wysiłku) pozwolić na zaaprobowanie w normie skalowanie wymiarów obuwia nie wystarcza do zapewnienia komfortu podczas jego użytkowania. W pośród 55 badanych ochotników stwierdzio, że noszenie

wykorzystanego w badaniach obuwia powodowało u nich dyskomfort, który powiązał się z niekomfortowym skaliowaniem w różnym stopniu, w zależności od długości wyciągniętej. W przypadku, gdy odniesienie do wymiarów obuwia zgodnie z normą ISO 20344:2012 [8], gdzie stopniowanie wymiarów obuwia według długości we Francji (FR) i Anglii (UK) określa tabela 1. Przeprowadzony w ramach oceny wymiarów stóp wywiad z uczestnikami badań na temat komfortu użytkowania obuwia (przed i po wysiłku) pozwolić na zaaprobowanie w normie skalowanie wymiarów obuwia nie wystarcza do zapewnienia komfortu podczas jego użytkowania. W pośród 55 badanych ochotników stwierdzio, że noszenie

wykorzystanego w badaniach obuwia powodowało u nich dyskomfort, który powiązał się z niekomfortowym skaliowaniem w różnym stopniu, w zależności od długości wyciągniętej. W przypadku, gdy odniesienie do wymiarów obuwia zgodnie z normą ISO 20344:2012 [8], gdzie stopniowanie wymiarów obuwia według długości we Francji (FR) i Anglii (UK) określa tabela 1. Przeprowadzony w ramach oceny wymiarów stóp wywiad z uczestnikami badań na temat komfortu użytkowania obuwia (przed i po wysiłku) pozwolić na zaaprobowanie w normie skalowanie wymiarów obuwia nie wystarcza do zapewnienia komfortu podczas jego użytkowania. W pośród 55 badanych ochotników stwierdzio, że noszenie

1 Wg tzw. rozmiarówki brytyjskiej, czyli długości łącznej w calach.

Tabela 1. Stopniowanie wymiarów obuwia wg PN-EN ISO 20344:2012 [8]

<table>
<thead>
<tr>
<th>Wymiary obuwia</th>
<th>Długość [mm]</th>
<th>Numeracja FR</th>
<th>Numeracja UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>36 i mniej</td>
<td>od 3 1/2</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>37 i 38</td>
<td>od 4 do 5 1/2</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>39 i 40</td>
<td>od 6 do 6 1/2</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>41 i 42</td>
<td>od 7 do 8 1/2</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>43 i 44</td>
<td>od 9 do 10 1/2</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>45 i więcej</td>
<td>od 10 1/2 i więcej</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2. Optymalna liczba rozmiarów kopyt dla badanej grupy 55 ochotników ze stopniowaniem co 5 i co 10 mm

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Stopniowanie co 5 mm</th>
<th>Stopniowanie co 10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Długość stopy [mm]</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Szerokość przodostopia [mm]</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Szerokość pięty [mm]</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Obwód przodostopia [mm]</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Wysokość palucha [mm]</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Obwód kostki [mm]</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Wysokość podbicia [mm]</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Wysokość kostki zewn. [mm]</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Obwód przez podbicie [mm]</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Obwód przez pięć [mm]</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabela 3. Wymiary 6 kopyt dla badanej grupy 55 ochotników

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Zalecane wymiary „kopyt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Długość stopy [mm]</td>
<td>257,75</td>
</tr>
<tr>
<td>Szerokość przodostopia [mm]</td>
<td>101,05</td>
</tr>
<tr>
<td>Szerokość pięty [mm]</td>
<td>67,94</td>
</tr>
<tr>
<td>Obwód przodostopia [mm]</td>
<td>237,01</td>
</tr>
<tr>
<td>Wysokość palucha [mm]</td>
<td>19,98</td>
</tr>
<tr>
<td>Obwód kostki [mm]</td>
<td>59,94</td>
</tr>
<tr>
<td>Wysokość podbicia [mm]</td>
<td>4,66</td>
</tr>
<tr>
<td>Wysokość kostki zewn. [mm]</td>
<td>50,21</td>
</tr>
<tr>
<td>Obwód przez podbicie [mm]</td>
<td>237,72</td>
</tr>
<tr>
<td>Obwód przez pięć [mm]</td>
<td>325,72</td>
</tr>
</tbody>
</table>
Wytyczne do projektowania obuwia ochronnego z zastosowaniem skanera 3D

Wytworzenie obuwia o chedach ochronnych przebiega w procesach technologicznych związanych z formowaniem elementów na podstawie szablony, którymi są „kopyta” stóp/nóg. W związku z tym najważniejszym etapem projektowania obuwia ochronnego jest stworzenie „kopyta” zgodnych z rzeczywistymi rozmiarami stóp użytkowników. Technika skanowania 3D pozwala w łatwy i precyzyjny sposób zarejestrować wymiary antropometriczne stóp użytkowników i, po ustaleniu warunków stopniowania „kopyta” w odniesieniu do danego grupy użytkowników, przygotować modele cyfrowe, na podstawie których opracowane zostaną fizyczne formy.

Procedura projektowania spersonalizowanego obuwia ochronnego z wykorzystaniem techniki skanowania 3D powinna uwzględniać następujące etapy:

- przygotowanie obiektu do cyfrowej rejestracji;
- sprawdzenie oświetlenia;
- ustawienie optymalnych parametrów skanowania 3D;
- wykonanie próbních zapisów;
- rejestracja parametrów stóp z wykorzystaniem skanera 3D;
- przygotowanie obrazu cyfrowego 3D do dalszej obróbki numerycznej;
- analiza wymiarów antropometricznych stóp na podstawie zapisanych obrazów 3D;
- wytypowanie kluczowych elementów konstrukcyjnych projektowanego obuwia;
- opracowanie tabel rozmiarów dla elementów konstrukcyjnych obuwia;
- zaprojektowanie elementów konstrukcyjnych obuwia;
- skalowanie elementów konstrukcyjnych na podstawie istniejących szablony projektowanego obuwia ochronnego z uwzględnieniem zarejestrowanych rozmiarów antropometricznych;
- opracowanie form odwrotnych/wnętrzowych dla elementów konstrukcyjnych obuwia ochronnego;
- cyfrowa transformacja chmury punktów 3D do formatu typu CAD z wykorzystaniem narzędzi inżynierii odwrotnej;
- ocena jakości łączenia zaprojektowanych elementów konstrukcyjnych (eliminacja punktów i krwawiz kolizyjnych).

Projektowanie elementów konstrukcyjnych obuwia ochronnego na podstawie uśrednionych wartości zarejestrowanych wymiarów antropometricznych stóp użytkowników może skutkować niedopasowaniem wyrobów w odniesieniu do większej grupy użytkowników, ze względu na możliwość występowania w badanej populacji osób charakteryzujących się istotnymi odstępstwami w zakresie jednego lub kilku wymiarów antropometricznych. W związku z tym najlepszym rozwiązaniem jest wytworzenie w badanej grupie użytkowników charakterystycznych typów antropometricznych i ustalenie odpowiedniego zakresu stopniowania rozmiarów „kopyta”, przy wykorzystaniu możliwie najszerszego zakresu parametrów. Należy przy tym zwrócić szczególną uwagę na osoby charakteryzujące się wyraźnymi odstępstwami w zakresie poszcze-}

BIBLIOGRAFIA