Materiały pomocnicze

 

Materiały pomocnicze

W kolejnych elementach systemu przeciwdziałania poważnym awariom przemysłowym i ograniczania ich skutków istotną rolę odgrywa ocena i analiza ryzyka stwarzanego przez substancje niebezpieczne (nadtlenki organiczne), obecne w zakładzie lub mogące powstać w trakcie poważnej awarii. Nie ma ustalonych jednolitych przepisów, obowiązujących prawnie, określających, które z metod szacowania ryzyka mogą być stosowane w odniesieniu do procedur poważnoawaryjnych, dlatego ważnym czynnikiem mogącym mieć wpływ na określenie i ocenę ryzyka w zakładzie jest dostęp do nowych metod, zmian i modyfikacji istniejących oraz badań publikowanych w czasopismach międzynarodowych. Mając na uwadze cel zadania, przygotowano autorski przegląd najnowszej i starszej literatury, która może zostać wykorzystana w tym celu w odniesieniu do nadtlenków organicznych. Podczas analizy publikacji skupiono się wybraniu pozycji szczególnie odnoszących się do modeli numerycznych pozwalających na symulacje skutków zdarzeń z udziałem nadtlenków.

 

Artykuły naukowe

Metody numeryczne

  • Lu, Y., Ng, D., & Mannan, M. S. 2011. Prediction of the reactivity hazards for organic peroxides using the QSPR approach. Ind. Eng. Chem. Res. 50(3), 1515-1522
  • Patlewicz G., Chen M.W., Bellin C.A., 2011. Non-testing approaches under REACH –help or hindrance? Perspectives from a practitioner within industry, SAR QSAR Environ. Res. 22, 67–88
  • Quintero F.A., Patel S.J., Mu˜noz F., Sam Mannan M., 2012. Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system, Ind. Eng. Chem. Res. 51, 16101–16115
  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A., 2010. Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction, Chem. Rev. 110 5714–5789

Pożar kulisty (fireball)

  • Blankenhagel P., Wehrstedt K.D., Xu S., Mishra K.B., Steinbach J., 2017 A new model for organic peroxide fireballs J. Loss Prev. Process Ind. 50, 237-242
  • Roberts, T., Gosse, A., Hawksworth, S., 2000. Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels. Process Saf. Environ. Prot. 78 (3), 184–192
  • Dorofeev, S.B., Sidorov, V.P., Efimenko, A.A., Kochurko, A.S., Kuznetsov, M.S., Chaivanov, B.B., Matsukov, D.I., Prereverzev, A.K., Avenyan, V.A., 1995. Fireballs from deflagration and detonation of heterogeneous fuel-rich clouds. Fire Saf. J. 25, 323–336
  • Satyanarayana, K., Borah, M., Rao, P.G., 1991. Prediction of thermal hazards from fireballs. J. Loss Prev. Process Ind. 4, 344–347

Pożar powierzchniowy (pool fire)

  • Siddapureddy, S., Wehrstedt, K.-D., Prabhu, S.V., 2016. Heat transfer to bodies engulfed in di-tert-butyl peroxide pool fire - numerical simulations. J. Loss Prev. Process Ind. 44, 204–211
  • Chun, H., Wehrstedt, K.-D., Vela, I., Schönbucher, A., 2009. Thermal radiation of di-tertbutyl peroxide pool fires - experimental investigation and CFD simulation. J. Hazard. Mater 167, 105–113
  • Mudan, K.S., 1984. Thermal radiation from hydrocarbon pool fires. Prog. Energy Combust. Sci. 10, 59–80

Pożar strumieniowy (jet fire)

  • Palacios, A., Munoz, M., Darbra, R.M., Casal, J., 2012. Thermal radiation from vertical jet fires. Fire Saf. J. 51, 93–101

Wybuch w ograniczonej przestrzeni (vce – vapour cloud explosion)

  • Hadjipanayis, M.A., Beyrau, F., Lindstedt, R.P., Atkinson, G., Cusco, L., 2015. Thermal radiation from vapour cloud explosions. Process Saf. Environ. Prot. 94, 517–527

Wybuch ekspandującej pary z wrzącej cieczy (BLEVE)

  • Eckhoff, R.K., 2014. Boiling liquid expanding vapour explosions (BLEVEs): a brief review. J. Loss Prev. Process Ind. 32, 30–43
  • Abbasi, T., Abbasi, S.A., 2007. The boiling liquid expanding vapour explosion (bleve): mechanism, consequence assessment, management. J. Hazard. Mater 141, 489–519

Badania kalorymetryczne

  • Sato Y., Akiyoshi M., Miyake A., Matsunaga T., 2011. Prediction of explosibility of self-reactive materials by calorimetry of a laboratory scale and thermochemicalcalculations, Sci. Tech. Energ. Mater. 72(4), 97–107
  • Shen, S. J., Wu, S. H., Chi, J. H., Wang, Y. W., & Shu, C. M. 2010. Thermal explosion simulation and incompatible reaction of dicumyl peroxide by calorimetric technique. Journal of Thermal Analysis and Calorimetry, 102(2), 569-577
  • Joming, T., Yingyu, Ch, Tehsheng, S., Chimin, Sh, 2007. Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation. J. Hazard. Mater. 142 (1), 765-770
  • Malow, M., & Wehrstedt, K. D. 2005. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. Journal of Hazardous Materials, a, 120(1), 21-24
  • Fisher, H. G., & Goetz, D. D. 1991. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter. Journal of Loss Prevention in the Process Industry, 4, 305–316

Metody przewidywania (predykcji)

  • Cao, H.Y., Jiang, J.C., Wang, R., Cui, Y., 2009. Prediction of the net heat of combustion of organic compounds based on atom-type electrotopological state indices. J. Loss Prev. Process Ind. 22, 222-227
  • Fayet, G., Rotureau, P., Joubert, L., 2009. On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations. J. Hazard. Mater. 171, 845–850
  • Gharagheizi, F., 2008. A simple equation for prediction of net heat of combustion of pure chemicals. Chemom. Intell. Lab. Syst. 91, 177-180
  • Duh, Y. S., Wu, X.H., Kao, C.S., 2008. Hazard ratings for organic peroxides. Process Saf. Prog. 27, 89–99
  • Tseng, J. M., Shu, C. M., Gupta, J. P., & Lin, Y. F. 2007. Evaluation and modeling runaway reaction of methyl ethyl ketone peroxide mixed with nitric acid. Industrial & Engineering Chemistry Research, 46(25), 8738-8745
  • Gang, J.K., Zhou, W.H., Ping, X.J., 2007. Brief introduce the characteristics of organic peroxide. Fine Chem. Ind. Raw Mater. Intermed. 3, 18–20
  • Chang R.H., Tseng J.M., Jehng J.M., Shu C.M., Hou H.Y., 2006. Thermokinetic model simulations for methyl ethyl ketone peroxide contaminated with H2SO4 or NaOH by DSC and VSP2, J. Therm. Anal. Calorim. 83, 57–62
  • Malow, M., & Wehrstedt, K. D. 2005. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. Journal of Hazardous Materials, a, 120(1), 21-24
  • Yang, D., Koseki, H., & Hasegawa, K. 2003. Predicting the selfaccelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. Journal of Loss Prevention in the Process Industry, 16(5), 411–416
  • Saraf, S. R., Rogers, W. J., & Mannan, M. S. 2003. Prediction of reactive hazards based on molecular structure. Journal of Hazardous Materials, 98(1), 15-29

Temperatura samoprzyspieszającego się rozkładu

  • Yanjie G., Xue Y., Lu Z.-g., Wang z., Chen W., Shi N., Sun F., 2015. Self-accelerating decomposition temperature and quantitative structure–property relationship of organic peroxides. Process Safety and Environmental Protection 94, 322–328
  • Pan Y., Zhang Y., Jiang J., Ding L. 2014. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structureeproperty relationship (QSPR) approach J. Loss Prev. Process Ind.  31, 41- 49
  • Ding, L., Zhang, L. J., Sheng, Y. X., & Yan, S. H. 2009. SADT calculation of solid organic peroxides based on small sample mass of heterogeneous reaction. Journal of the Chemical Industry and Engineering, 60, 1062-1067
  • Kossoy, A.A., Sheinman, I.Ya., 2007. Comparative analysis of the methods for SADT determination.. Hazard. Mater. 142,  626–638
  • Malow, M., & Wehrstedt, K. D. 2005. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. Journal of Hazardous Materials, a, 120(1), 21-24
  • Yang, D., Koseki, H., & Hasegawa, K. 2003. Predicting the selfaccelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. Journal of Loss Prevention in the Process Industry, 16(5), 411–416
  • Bosch, C. M., Velo, E., & Recasens, F. 2001. Safe storage temperature of peroxide initiators: prediction of self-accelerated decomposition temperature based on a runaway heuristics. Chemical Engineering Science, 56(4), 145-1457
  • Sun, J. H., Li, Y. F., & Hasegawa, K. 2001. A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. Journal of Loss Prevention in the Process Industries, 14(5), 331-336
  • Yu, Y., & Hasegawa, K. 1996. Derivation of the self-accelarating decomposition temperature for self-reactive substances using isothermal calorimeter. Journal of Hazardous Materials, 45(2–3), 193–205
  • Kotoyori, T. 1995. Critical temperatures for the thermal explosion of liquid organic peroxides. Process Safety Progress, 14(1), 31–44
  • Fisher, H. G., & Goetz, D. D. 1993. Determination of self-accelerating decomposition temperatures for self-reactive substances. Journal of Loss Prevention in the Process Industry, 6(3), 183–194
  • Whitmore, M. W., & Wilberforce, J. K. 1993. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. Journal of Loss Prevention in the Process Industry, 6(2), 95–101
  • Kotoyori, T. 1993. Critical temperature for the thermal explosion of liquids. Combustion and Flame, 95, 307–312
  • Kotoyori, T. 1988. Critical ignition temperatures of chemical substances. Journal of Loss Prevention in the Process Industry, 2(1), 16–21

 

Materiały konferencyjne

  • Blankenhagel, P., Mishra, K.B., Wehrstedt, K.-D., Steinbach, J., 2016. Thermal radiation impact of DTBP fireballs. In: Proceedings of 19th Seminar on New Trends in Research of Energetic Materials, str. 410–418.
  • Mishra, K.B., Wehrstedt, K.-D., Krebs, H., 2015. Boiling liquid expanding vapour explosion (BLEVE) of peroxy-fuels: experiments and computational fluid dynamics (CFD) simulation. Energy Procedia 66, 149–152
  • Kossoy, A. (2003) The advanced approach to reactivity rating. Proceedings of Mary Kay O’Connor process safety center 2003 annual symposium, Texas USA, 197–208
  • Clark D.E. 2001, Peroxides and peroxide-forming compounds, Chem. Health & Safe 12–22
  • Clark, R.D., Sprous, D.G., Leonard, J.M., 2001. Validating models based on large dataset. In: Holtje, H.-D., Sippl, W. (Eds.), Rational Approaches to Drug Design, Proceedings of the 13th European Synposium on Quantitative Structure-activity Relationships, Prous Sci, pp. 475-485.
  • Hasegawa, K., & Li, Y. 1998. On the thermal decomposition mechanism of self-reactive material and the evaluating method for their SADTs. Proceedings of ninth international symposium of loss prevention and safety promotion in the process industries, Barcelona, Spain, pp. 555–569
  • Mores, S., Nolan, P., O’Brien, G., 1994. Determination of self-accelerating  decomposition temperature (SADT) from thermal stability data  generated using  accelerating rate calorimetry. In: InI Chem E Symposium, Manchester
  • Cracknell, R.F., Carsley, A.J., 1997. Cloud fires - a methodology for hazard consequence modelling. In: IChemE Symposium Series, vol. 141. str. 139–150.
  • Mores, S., Nolan P. F., & Brien, G. O. 1989. Determination of selfaccelerating decomposition temperature (S.A.D.T.) from thermal stability data generated using accelerating rate calorimetry, I. Chem. E. Symposium series No. 134 str. 609–627
  • Fay, J.A., Lewis Jr., D.H., 1976. Unsteady burning of unconfined fuel vapor clouds. In: Sixteenth Symposium on Combustion, vol. 16. The Combustion Institute, str. 1397–1405

 

Monografie

  • Casal, J., 2008. Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants. Elsevier, Industrial Safety Series Vol. 8
  • Mannan, S., 2005. third ed. Lees' Loss Provention in the Process Industries, vol. 1 Butterworth-Heinemann, Burlington rozdział 16
  • Casal, J., Arnaldos, J., Montiel, H., Planas, E., Vilchez, J., 2002. Modeling and Understanding BLEVEs. McGraw-Hill, New York, str. 22.1–22.27 rodział 22
  • Herbert, K., Peter, H. G., Rainer, S., & Wilfried, M. 2002. Peroxy compounds, organic in ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH.
  • Hiatt, R. 1971. In Daniel Swern, Organic peroxides (vol. II) str. 812–815. Wiley-Interscience
  • C.S. Sheppard, O.L. Magelli, 1970 Organic peroxides and peroxy compounds –generaldescription, in: D. Swern (Ed.), Organic Peroxides, Wiley-Interscience, NewYork, , pp. 1–104

 

Raporty

  • He, J., 2008. Study on Thermal Decomposition Analysis of Organic Peroxides. Nanjing University of Science &Technology,  Nanjing
  • OECD, 2007. Guidance document on the validation of (Quantitative)Structure–Activity Relationships [(Q)SAR] models Paris
  • Jagger, S., O'Sullivan, S., 2004. Human Vulnerability to Thermal Radiation Offshore. Health and Safety Laboratory, Buxton http://www.hse.gov.uk/research/hsl _pdf/2004/hsl04-04.pdf
  • Yang, D., Koseki, H., Hasegawa, K., 2003. Elaborately simulated decomposition kinetics of organic peroxides, Report of National Research Institute of Fire and Disaster, vol. 95., 9–18
  • Health and Safety Executive, 2002. Chemical Warehoursing - Safety Report Assessment Guide, vol. 6 HSE. http://www.hse.gov.uk/Comah/sragcwh/ index.htmWilberforce, J. K. 1981. The use of the accelerating rate calorimeter to determine the SADT of organic peroxides. Columbia Scientific Industries Corp. Internal Report. Milton Keynes
  • CCPS, 1994. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. John Wiley & Sons, New York