Colin H. Hansen, Scott D. Snyder, "Active Control of Noise and Vibration"

 

Published by E & FN Spoon, an imprint of Chapman & Hall,
2-6 Boundary Row, London SE1 8HN, UK, first edition, 1997
ISBN 0-419-19390-1

Preface (XVIII)
Acknowledgements (XX)
1. Background (1)
1.1. Introduction and potential applications (1)
1.2. Overview of active control systems (6)
2. Fundamentals of acoustics and vibration (13)
2.1. Acoustic wave equation (13)
2.2. Structural mechanics: fundamentals (27)
2.3. Vibration of continuous systems (42)
2.4. Structural sound radiation, sound propagation, and Green's functions (92)
2.5. Impedance and intensity (117)
3. Spectral analysis (190)
3.1. Digital filtering (190)
3.2. Digital Fourier analysis (193)
3.3. Signal types (202)
3.4. Convolution (204)
3.5. Important frequency domain functions (207)
4. Modal analysis (211)
4.1. Modal analysis: analytical (211)
4.2. Modal analysis: experimental (228)
4.3. Modal amplitude determination from system response measurements (252)
5. Modern control review (260)
5.1. Introduction (260)
5.2. System arrangements (260)
5.3. State space system models for feedback control (267)
5.4. Discrete time system models for feedback control (279)
5.5. Frequency domain analysis of poles, zeros and system response (305)
5.6. Controllability and observability (319)
5.7. Control law design via pole placement (331)
5.8. Optimal control (337)
5.9. Observer design (347)
5.10. Random processes revisited (353)
5.11. Optimal observe: the Kalman filter (362)
5.12. Combined control law/observer: compensator design (365)
6. Feedforward control system design (374)
6.1. Introduction (374)
6.2. What does feedforward control do? (376)
6.3. Fixed characteristic feedforward control systems (379)
6.4. Waveform synthesis (379)
6.5. The non-recursive FIR deterministic gradient descent algorithm (393)
6.6. The LMS algorithm (407)
6.7. Adaptive filtering in the frequency domain (418)
6.8. Single channel filtered-x LMS algorithm (421)
6.9. The multiple input, multiple output filtered-x LMS algorithm (460)
6.10. Cancellation path transfer function estimation (480)
6.11. Adaptive signal processing using recursive (IIR) filters (485)
6.12. Application of adaptive IIR filters to active control systems (494)
6.13. Adaptive filtering using artificial neural networks (513)
6.14. Neural network based feedforward active control systems (523)
6.15. Adaptive filtering using a genetic algorithm (538)
7. Active control of noise propagating in ducts (553)
7.1. Introduction (553)
7.2.Control system implementation (557)
7.3. Harmonic (or periodic) plane waves (576)
7.4. Higer order modes (609)
7.5. Acoustuc measurements in ducts (629)
7.6. Sound radiated from exhaust outlets (637)
7.7. Control of pressure pulsations in liquid filled ducts (641)
7.8. Active headsets and hearing protectors (642)
8. Active control of free field sound radiation (659)
8.1. Introduction (659)
8.2. Control of harmonic sound pressure at a point (661)
8.3. The minimum acoustic power output of two free field monopole sources (667)
8.4. Active control of acoustic radiation from multiple primary monopole sources using multiple control monopole sources (681)
8.5. The effect of transducer location (691)
8.6. Reference sensor location considerations (697)
8.7. The active control of harmonic sound radiation from planar structures: general problem formulation (704)
8.8. An example: control of sound radiation from a rectangular panel (726)
8.9. Electrical transformer noise control (737)
8.10. A closer look at control mechanisms and a common link among all active control systems (739)
8.11. Sensing vibration to minimize acoustic radiation (762)
8.12. Some notes on approaching the design of an active control system for sound radiation from a vibrating surface (774)
8.13. Active control of free field random noise (780)
8.14. Active control of impact acceleration noise (792)
8.15. Feedback control of sound radiation from vibrating structures (803)
9. Active control of enclosed sound fields (817)
9.1. Introduction (817)
9.2. Control of harmonic sound fields in rigid enclosures at discrete locations (826)
9.3. Global control of sound fields in rigid enclosures (826)
9.4. Control of sound fields in coupled enclosures at discrete locations (839)
9.5. Minimization of acoustic potential energy in coupled enclosures (849)
9.6. Calculation of optimal control source volume velocities using boundary element methods (852)
9.7. Control mechanisms (860)
9.8. Influence of control source and error sensor arrangement (877)
9.9. Controlling vibration to control sound transmission (882)
9.10. The influence of modal density (889)
9.11. Control of sound at point in enclosures with high modal densities (897)
9.12. State space models of acoustic systems (906)
9.13. Aircraft interior noise (909)
9.14. Automobile interior noise (916)
10. Feedforward control of vibration in beams and plates (924)
10.1. Infinite beam (927)
10.2. Finite beam (944)
10.3. Active control of vibration in a semi-infinite plate (972)
11. Feedbackcontrol of flexible structures described in terms of modes (989)
11.1. Introduction (989)
11.2. Modal control (990)
11.3. Independent modal space control (1015)
11.4. Co-located controllers (1024)
11.5. A brief note on model reduction (1026)
11.6. Sensor and actuator placement considerations (1030)
12. Vibration isolation (1043)
12.1. Introduction (1043)
12.2. Feedback control (1049)
12.3. Applications of feedback control (1089)
12.4. Feedforward control: basic SDOF system (1118)
12.5. Feedforward control: single isolator between a rigid body and a flexible beam (1122)
12.6. Feedforward control: multiple isolators between a rigid body and a flexible plate (1131)
12.7. Feedforward control: multiple isolators between a rigid body and a flexible cylinder (1145)
12.8. feedforward control: summary (1154)
13. A few electronic implementation issues (1162)
13.1. The analogue/digital interface (1163)
13.2. Microprocessor selection (1170)
13.3. Software considerations (1172)
14. Sound sources and sound sensors (1173)
14.1. Loudspeakers (1173)
14.2. Horns (1173)
14.3. Omni-directional microphones (1179)
14.4. Directional microphones (1183)
14.5. Turbulence filtering sensors (1188)
15. Vibration sensors and vibration sources (1196)
15.1. Accelerometers (1196)
15.2. Velocity transducers (1204)
15.3. Displacement transducers (1206)
15.4. Strain sensors (1208)
15.5. Hydraulic actuators (1121)
15.6. Pneumatic actuators (1222)
15.7. Proof mass actuator (1223)
15.8. Electrodynamic and electromagnetic actuators (1223)
15.9. Magnetostrictive actuators (1225)
15.10. Shape memory alloy actuators (1228)
15.11 Piezoelectric (electrostrictive) actuators (1230)
15.12. Smart structures (1242)
15.13. Electrorheological fluids (1242)
Appendix. A brief review of some results of linear algebra (1246)
A1. Matrices and vectors (1246)
A2. Addition, substraction and multiplication by a scalar (1247)
A3. Multiplication of matrices (1248)
A4. Transposition (1249)
A5. Detreminants (1249)
A6. Matrix inverses (1250)
A7. Rank of a matrix (1251)
A8. Positive and non-negative definite matrices (1251)
A9. Eigenvalues and eigenvectors (1252)
A10. Orthogonality (1252)
A11. Vector norms (1253)

 

© 2002-2004 Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy www.anc.pl, www.ciop.pl