PRINCIPLES AND METHODS OF ASSESSING THE WORKING ENVIRONMENT

NUMBER 2 (108) 2021




  • 2-Methoxypropan-1-ol. Documentation of proposed values of occupational exposure limits (OELs)
    ANNA KILANOWICZ-SAPOTA, MICHAŁ KLIMCZAK , MAŁGORZATA SKRZYPIŃSKA-GAWRYSIAK, p. 5-25
  • Wood dust – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)
    RENATA SOĆKO, DARIA PAKULSKA, , WIESŁAW SZYMCZAK, p. 27-138
  • Furan. Determination in workplace air with gas chromatography
    MAŁGORZATA KUCHARSKA , ANNA PISARSKA , JAKUB SMUGA , WIKTOR WESOŁOWSKI, p. 139-154
  • A cascade impactor as a method of collecting nano-objects for microscopic analysis
    Paweł Kozikowski, Piotr Sobiech, Przemysław Oberbek, Szymon Jakubiak, p. 155-167
  • Soluble tungsten compounds. Determination in workplace air
    PAWEŁ WASILEWSKI, p. 167-177
  • 2-Methoxypropan-1-ol. Documentation of proposed values of occupational exposure limits (OELs)
    ANNA KILANOWICZ-SAPOTA, MICHAŁ KLIMCZAK , MAŁGORZATA SKRZYPIŃSKA-GAWRYSIAK

    2-Methoxypropan-1-ol is a by-product of a propylene glycol methyl ether (PGME) manufacturing process, in which it is an impurity at concentrations up to 5%. 2-Methoxypropan-1-ol as a PGME impurity can occur in industry in paints solvents, varnishes, dyes, inks, adhesion agents, ingredients in cleaning formulations and chemical synthesis intermediates. It may also occur as an impurity in cosmetics, although its use in these products is prohibited. At occupational exposure, 2-methoxypropan-1-ol may be absorbed through inhalation and skin. There are no data on the number of people exposed to this compound in Poland and no data on its toxic effects in humans. There is only one study that showed a statistically significant increase in the occurrence of birth defects in children of mothers exposed to 2-methoxypropan-1-ol. The proposed MAC value for 2-methoxypropan-1-ol (20 mg/m3) is based on the systemic toxicity demonstrated in a study on pregnant rabbits (NOAEC value of 1335 mg/m3). Due to its irritant effects, STEL value of 40 mg/m3 and “I” notation are also proposed. There is no basis for establishing a BEI value. Since dermal exposure may contribute significantly to the absorption of 2-methoxypropan-1-ol by workers, a „skin” notation is also required. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Wood dust – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)
    RENATA SOĆKO, DARIA PAKULSKA, , WIESŁAW SZYMCZAK

    Wood is a raw material of the wood industry. Exposure to dust from deciduous trees (hardwood) or from a mixture with coniferous species (softwood) is correlated with nasopharyngeal adenocarcinomas. Occupational asthma is the result of actions of the biologically active compounds present in some wood species (both hardwood and softwood). Hardwood and softwood dusts may impair clear airway, resulting in chronic lung disease. Taking into account the health effects and the socio-economic conditions of enterprises presented by the European Commission, we propose to lower the current TLV value from 3 mg/m3 to 2 mg/m3 for the inhalable fraction of wood dust, with the note that the TLV value applies to all types of wood dust. The proposed value corresponds to the binding value proposed by the European Commission (BOELV) for the inhalable fraction of hardwood dusts set at 2 mg/m3, taking into account the socio-economic conditions of enterprises. This value will apply in Poland and EU countries from January 18, 2023. The Commission of the European Union included research on exposure to hard and mixed wood dust to technological processes classified as carcinogenic to humans (Directive 2017/2398/EC) and indicating that if there is a mixture of hardwood dust with other wood dust then MAC refers to the total wood dust present in the mixture. Due to the fact that wood dusts are carcinogenic, mutagenic and cause pneumoconiosis, the determination of STEL values is unjustified. Wood dust was labeled as a carcinogen with Annex 1 to the Regulation of Ministry of Health, and with letter “A” because of possible sensitization. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Furan. Determination in workplace air with gas chromatography
    MAŁGORZATA KUCHARSKA , ANNA PISARSKA , JAKUB SMUGA , WIKTOR WESOŁOWSKI

    Furan is colorless, highly volatile and flammable liquid with a specific ether odor. In nature it occurs in some species of wood, it is formed during burning process of wood, tobacco, fuels and also in thermal food processing. In industry furan is used as an intermediate in organic synthesis, resins solvent, during production of lacquer, drugs, stabilizers, insecticides and also in production of chemical compounds which have polymeric and coordination structure. Carcinogenic effect on animals was a base of recognition that furan is a substance which is probably also carcinogenic on humans. The aim of this study was to develop and validate a method of determining furan in workplace air. Developed determination method of furan relies on vapor absorption of this substance on coconut shell charcoal. Furan was extracted by 5% butan-1-ol solution in toluene. Obtained solution was analyzed with chromatography. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with non-polar HP-PONA capillary column (length 50 m, diameter 0.2 mm and the film thickness of the stationary phase 0.5 μm). Developed method is linear in the concentration range of 0.05–1.0 μg/ml, which is equivalent to the range of 0.005–0.1 mg/m3 for 10-L air sample. The analytical method described in this paper makes it possible to determine furan in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method of determining furan in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    A cascade impactor as a method of collecting nano-objects for microscopic analysis
    Paweł Kozikowski, Piotr Sobiech, Przemysław Oberbek, Szymon Jakubiak

    Particulate matter can be harmful to human health and the risk of harmful effects increases with the duration of exposure. Currently, the occupational groups that are potentially exposed to nanomaterials are those who manufacture and supply them. Therefore, it is necessary to use devices for the collection and analysis of solid particles with the exclusion of the ambient fraction. In this study, Diesel soot generated using Diesel engine has been collected with cascade impactor and analyzed by means of scanning electron microscopy. Observations revealed large discrepancies between the cut off diameter d50 and equivalent diameter calculated from SEM images and a number of types of Diesel particulate matter. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    Soluble tungsten compounds. Determination in workplace air
    PAWEŁ WASILEWSKI

    Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m3, according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m3. The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m3. The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.



    CONTENTs
    2024 - 2004
    Select yearSelect issue