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Active noise reduction systems based on a control unit in the form of a finite 
impulse response filter assume the linearity of every single component. Neural 
networks, which have so far been seldom used in this field, are a kind of a filter 
with the ability to project nonlinear characteristics of an active noise reduction 
system. This paper presents some simulation research studies of active noise 
reduction systems based on neural networks. Also presented are results of the 
operation of systems with different levels of complexity as well as the influence 
of different parameters of a neural network and of the system itself on those  
results. 
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1.  INTRODUCTION 
 
Active noise reduction is based on the phenomenon of mutual compensation 
of acoustic waves leading to a decrease in the sound pressure level at a given 
point in space (Engel & Kowal, 1995; Engel, Makarewicz, 0RU]\�VNL� 	

Zawieska, 2001; Hansen & Snyder, 1997). Figure 1 is a general diagram of 
an active noise reduction system. 

A compensating acoustic wave is created by means of an additional sound 
source. In order to reduce noise at the point in space we are interested in (the 
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Figure 1.  A general diagram of an active noise reduction system. 

 
point of observation), an acoustic compensation wave has to have at this 
point the same amplitude as the acoustic noise wave and an opposite phase. 
The secondary sound source should be controlled in such a way that it fulfills 
the aforementioned condition with the highest achievable accuracy. A con-
troller that drives the secondary source should analyze a noise signal and 
generate an adequate compensating signal, taking into account transfer func-
tions of the elements of the electroacoustic path, including phase shift results 
from different distances between sources and the point of observation.  

Because of the requirements that a control unit must fulfill, most often it 
has the form of some kind of a digital filter. Because in general not all transfer 
functions are known and, in addition, these functions can vary in time, the 
control filter is most often an adaptive filter (Engel et al., 2001; Makarewicz, 
0DWXV]HZVNL� 0RU]\�VNL� 	 =DZLHVND� ������ 7KDW LV ZK\ LW FDQ FKDQJH LWV

parameters by itself in such a way that it increases the efficiency of an active 
noise reduction system. 

The most frequently used filter type is a finite impulse response (FIR)  
filter. Adaptive algorithms used with this filter are not computationally very 
complex, but control based on this filter does not take into account nonlinear 
phenomena. Artificial neural networks are free of this disadvantage. Until 
recently, for various reasons (especially the considerable complexity of cal-
culations and a relatively long time of adaptation of a neural network) their 
application in active noise reduction systems was rather limited. 

In the next part of this paper fundamental problems concerning neural 
networks are briefly discussed. Some results of a simulation of active noise 
reduction systems based on neural networks are also presented. All simula-
tions were made in a Matlab environment.  

noise source
(primary)

additional sound
source

(secondary) controller

point
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2.  NEURAL NETWORKS IN ACTIVE NOISE  
REDUCTION SYSTEMS 

 
Artificial neural networks originated as a kind of a model of a biological neural 
V\VWHP �1Dá
F]� 'XFK� .RUELF]� 5XWNRZVNL� 	 7DGHXVLHZLF]� ������ 7KH EDVLF 
element of a neural network is a neuron, which is presented in Figure 2. Like 
its biological equivalent it has N inputs and one output. In a neural network 
each neuron output is connected with inputs of other neurons depending on 
WKH QHWZRUN VWUXFWXUH �(QJHO 	 1L]LRá� ����� (QJHO HW DO�� ����� 6DUOH� ������ 

 

Figure 2.  A neuron. 

 
Output signal y of a neuron is a function of the sum of weighted input sig-

nals x in accordance with the following formula: 
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where h0 is the nodal bias and hi are weights of input signals. In the following 
part of the paper it is assumed that in the analyzed networks h0 = 0. The func-
tion F(u) is called an activation function. Most often a unit step function,  
a linear function, a logistic curve, or a hyperbolic tangent are used as F(u).  
In the described active noise reduction (ANR) system a hyperbolic tangent  
is used as an activation function. It is given by 
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Figure 3 shows a plot of the tgh��u� IXQFWLRQ IRU GLIIHUHQW YDOXHV RI �� 
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Figure 3.  The activation function tgh��u� IRU GLIIHUHQW YDOXHV RI �� 

 
 

Figure 4.  A multilayer feedforward neural network. 
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As mentioned before there are many types of neural networks, which dif-
fer in the neuron connection. Figure 4 presents an example of a multilayer 
feedforward neural network on which an ANR system is based. 

This network consists of the input layer IL, one or more hidden layers HL, 
and the output layer OL. The input layer of a neural network is a tapped delay 
line in which one tap can be treated as an elementary neuron. Each neuron of 
a given layer is connected with all neurons of the preceding layer. Signals in 
a network propagate only in the direction from input to output (there is no 
feedback). The operation of a network with one hidden layer and one neuron 
in the output layer presented in Figure 4 is described by Equations 3 and 4: 
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where LX is the number of taps in the input layer, L is the number of neurons 
in the hidden layer, and the superscript indicates the number of the neuron 
layer counting from the first hidden layer. The output signal of a network y(2) 
is a compensating signal of an active noise reduction system. The aim of a 
learning process (adaptation) of a network is the minimization of a squared 
error (e(2))2, where 

 
������� ������

Q\QGQH +=                                       (5) 

 
One of the most popular learning algorithms is the back propagation  

algorithm (Hansen & Snyder, 1997; 1Dá
F] HW DO�� ����� 5XWNRZVNL� ������  
According to this algorithm, for a network presented in Figure 4, the weights 
of a neuron in the output layer will be updated according to Equation 6: 
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and the weights of the neurons in the hidden layer according to Equation 7: 
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where 
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QQX)QHQ KH =                                (8) 

 
DQG � LV WKH OHDUQLQJ IDFWRU� DV D UXOH VHOHFWHG H[SHULPHQWDOO\ IURP the inter-
val (0, 1). 

Assuming that tgh��u) is the activation function 
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which allows us to significantly simplify calculations. 

 
 

3.  SIMULATIONS 
 

Figure 5 presents a block diagram of the considered ANR system. 
 

Figure 5.  A block diagram of an active noise reduction system. 

 
The noise signal X (the reference signal) after propagating through the 

acoustic path P reaches the point of observation as a signal D. On the basis of 
the knowledge of the signal X the neural network NN generates the compen-
sating signal Yo on its output. The error signal Eo is the sum of the noise signal 
D and the compensating signal Yo. In the analyzed system it is assumed that a 
secondary source and an error signal detector are located at the observation 
point. The neural network NN is similar to the network presented in Figure 4. 
It has one hidden layer and an output layer with one neuron. The learning 
process of the network takes place in accordance with Equations 5–9. In 
simulations two types of reference signals were used: a pure sinusoid of  
frequency 100 Hz and pseudorandom noise. 
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Figure 6.  Signals in a simulated active noise reduction system for sinusoidal noise. 

 

Figure 7.  Signals in a simulated active noise reduction system for pseudorandom 
noise. 
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Figure 6 presents the performance of an active noise reduction system for 
sinusoidal noise, and Figure 7 for pseudorandom noise. During calculations it 
ZDV DVVXPHG WKDW �  ���� L = 2, LX = 20, Tp = 1 kHz, and the delay of the 
channel P was 0.01 s. From the figures it appears that the active noise reduc-
tion system based on a neural network is capable of effectively reducing 
simulated noise. Unfortunately the adaptation time is relatively long, even for 
a network of a simple structure. 

The next experiment concerned the behavior of a neural network in the 
case of the nonlinear acoustic channel P. In the simulation the reference sig-
nal X was a single tone. After transmitting through the acoustic channel P 
two additional tones appeared in this signal. These tones were the 3rd and the 
5th harmonics of this tone (Figure 8). 

 

Figure 8.  The reference signal before (X) and after (D) passing through the non- 
linear acoustic path. 

 
Figures 9 and 10 present error signals of active noise reduction systems 

with the use of a FIR filter and a neural network for different types of  
the acoustic path P. During calculaWLRQV LW ZDV DVVXPHG WKDW �  ���� L = 2, 
LX = 20, Tp = 1 kHz; the delay of the channel P was 0.01 s and the length of 
the FIR filter was 20. 
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Figure 9.  Error signals of active noise reduction systems based on the finite impulse 
response (FIR) filter (E) and a neural network (Eo) for the linear acoustic path P. 

 

Figure 10.  Error signals of active noise reduction systems based on the finite impulse 
response (FIR) filter (E) and a neural network (Eo) for the nonlinear acoustic path P. 
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From the aforementioned figures it can be seen that in the case of the linear 
acoustic path P the FIR filter has better convergence than a neural network. 
At the same time this filter is not capable of reducing noise where the acoustic 
path P is nonlinear.  

Figure 11 presents the results of the performance of an active noise reduc-
tion system for the linear acoustic path P and different numbers of neurons in 
the hidden layer. 

 

Figure 11.  The performance of an active noise reduction system for the linear 
acoustic path P and different numbers of neurons in the hidden layer. 
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delay of the channel P was 0.01 s. Noise was simulated as a pseudorandom 
signal. From the simulation it appears that increasing the number of neurons in 
the hidden layer has an unfavorable influence on the performance of the sys-
tem. Due to a large number of network coefficients the adaptation time is long.  

The situation is opposite when it is assumed that the acoustic path P  
is nonlinear (Figure ���� 'XULQJ FDOFXODWLRQV LW ZDV DVVXPHG WKDW �  ����  
LX = 20, Tp = 1 kHz; the delay of the channel P was 0.01 s and the length of 
the FIR filter was 20. Signals X and D were the same as in Figure 8. 
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Figure 12.  The performance of an active noise reduction system for the nonlinear 
acoustic path P and different numbers of neurons in the hidden layer. 
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Figure 13.  A block diagram of a two-channel active noise reduction system. 

 

Figure 14.  The performance of a two-channel active noise reduction system. 

 
Figure 14 presents simulated results of performance of such a system. 
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4.  CONCLUSIONS 
 

The main disadvantage of applying artificial neural networks in active noise 
control systems is the complexity of calculations and the long adaptation of 
the parameters of neural networks. This restricts practical application of such 
adaptive systems to a stationary or almost stationary noise source. This dis-
advantage is compensated by the ability of neural network-based ANR sys-
tems to deal with nonlinear phenomena encountered in almost all practical 
applications. Increasing the processing power of digital signal processors and 
general purpose processors leads to the conclusion that it will soon be possi-
ble to disregard the problem of calculation complexity of neural networks in 
ANR systems. 

The simulation experiments that were carried out confirmed usefulness of 
neural networks in active noise reduction systems, particularly in nonlinear 
systems and multichannel systems. The reduction of low frequency noise 
emitted by high power electric transformers is a good example. In the spec-
trum of this noise odd harmonics of the fundamental frequency of power 
supply can be found. Moreover to reduce noise emitted by such transformers 
multichannel active noise reduction systems are recommended.  
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