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The modal low frequency noise generated by a vibrating elastically supported circular plate embedded
into a flat infinite baffle has been examined. The main aim of this study is the analysis of the radiation
efficiency. Low frequency approximated formulas have been presented. They are valid for all the limiting
boundary conditions of the plate with its edge clamped, guided, simply supported or free as well as for all
the intermediate axisymmetric boundary configurations. The formulas are expressed in the elementary form,
useful for numerical computations. They are a generalization of some earlier published results. First, they
are valid for axisymmetric and asymmetric modes since both kinds of modes play an important role in the low
frequency range. Second, a single formula for the radiation efficiency, valid for all the axisymmetric boundary
configurations, has been proposed. A numerical example for the sound power radiation has been given for
some hatchway covers mounted on a ship deck.
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1. INTRODUCTION attempted to find some approximate formulas for
radiation efficiency of a clamped circular plate
Thin flat circular plates often appear in applying some complete solutions to the vibration

communication, transport, military, industry
and in devices in common use. Usually, they

phenomena [6, 7, 8, 9].
So far, to the best knowledge of these authors,

are excited and become sources of unwanted no generalized modal low frequency formulas have

sound exposing humans to noise. Therefore, it
is necessary to examine acoustic quantities such
as the radiation efficiency of such sound sources.
A number of authors used some approximate
methods for computing the radiation efficiency
of some flat plates [1, 2, 3, 4, 5]. A few studies

been presented for an elastically supported circular
plate. Developing a single formula valid for any
axisymmetric boundary configuration of the plate
for all the axisymmetric and asymmetric modes
would be especially useful and therefore this is the
main aim of this study.
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2. GOVERNING EQUATIONS

A thin elastically supported circular plate is
embedded into a rigid infinite baffle. Low fluid
loading has been assumed and all the internal
damping has been neglected. The plate deflections
and thickness have been assumed to be small as
compared with other dimensions of the plate. The
equation of motion takes the form of

(kAVP—1)W, (r,9)=0, (1)

where W, (r, @) is the mode shape of the mode
(m, n); r € [0, a] is the radial variable; a is the plate
radius; @ € [0, 2n] is the angular variable; m = 0,
1,2,...,~andn=1,2,3, .., « are the numbers
of nodal diameters and nodal circles, respectively;
V: = @Y + @0 + r’ (9%0¢Y);
ki = w2 phl!Dg; w,,, 18 the eigenfrequency;
Dy = ERI[12(1 — v*)] is the bending stiffness; p,
h, E, v are the plate density, thickness, Young
modulus and Poisson ratio, respectively. The
solution for Equation 1 is

cosme@

W (r,0) = { }Wmn ., (2
¢

sinm

Wﬂ’lﬂ (r) = Amn [‘Im (kmn r) + lel Im (kmn r)]’ (3)

where J,, (), I, (¢) are the mth order Bessel
and modified Bessel functions, respectively;
A . C_ are unknown constants [10, 11]. The

mn> mn

orthogonality condition [10] is
2npea
-[O IOWmn (}", (P)qu (}", (P)rdrd(p = naZSmpan ’ (4)

where §,,, and §,, are the Kronecker deltas, and
the following integral

2T (cosma, | cos po, 2n
J. . . d(PO = 8mp 2
sinme, | |sin p@, €

0 m

has been used to obtain

€ 1 for
Ar%m = - > Sm =
N 2 for

m=0

m>0 )

mn

mn-m

N, =% [0, K+ €1, (k)Y rdr
a 0

m

2
= ‘]31 (kmn ) + ‘]2 +1 (xmn) - x_m‘]m+l (xmn )‘]m (}\‘mn)

mn

m

2
+C3m Irzn (an) - 12+l (kmn) _}\‘_mlm-%—l (xmn )Im (xmn)

mn

2C,,

+ [‘]m+1 (kmn )Im (kmn)_{— ‘]m (}\‘mn )Im+1 (7\‘mn )]’
(6)

mn

where A, =k, a is the eigenvalue.

The plate satisfies uniform boundary conditions

V(a, 9) = - KyW,, (a, ), (7

Ma@p) =K, Werol,_.  ®
or r=a

where Ky, and K, are the boundary stiffness
values associated with the force V resisting
transverse deflection of the plate edge and with
the bending moment M of the edge, respectively
[12]. The shearing force and the radial co-
ordinate of the bending moment related to the
length unity can be formulated as

0 _, l-vo[l1é&
V(r,p)=-Dy| —V? +———| ———||W,_(r,
(r,o) E{ar p Gr(ra(pz ]:| o (7> @)
and )
2 2
M =-Dp| Y L4l w0,
or- rl\or rop (10)

respectively. Inserting Equation 2 into Equations
7 and 8 gives the frequency equation

_ {mlm=)yv+1]=g=—mr; 3, (M) + A, O =MW ()

mn

2, —mlp+(m-DA-I, )+ A (prv =1,

m*[(m—-1v+1]1—g+md M, (A, )+ A, Ao +m* I, ()

mn)

AL, +mlp+ = DA= I, () + R, (V=D (R0 (1)
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where g = Ky, a3/DE and p = K, a/Dy are the
dimensionless boundary stiffness values.
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The Green function of the Neumann boundary
value problem can be formulated as the Fourier
series with respect to the angle variable ¢:

G(r,0,2175,9,,0) = D &, coss(®—y)g, (r,z17y,0),
s=0 (12)

where ¢, has been defined in Equation 5, the
Fourier coefficients have been expressed in their
Hankel representations [13, 14]

g, (r,z1r,0)= LJ.e"VZJs(Tr)JX(TrO)w—T, (13)

2ny Y
and Y= k* - T2; k is the acoustic wavenumber;
t=ksin9; i=~-1; (r, ¢, z) are the polar co-
ordinates of the field point; (1, ¢, 0) are the polar
co-ordinates of the plate point; r € [0, al; ¢, € [0,
2nt]. The Fo&ries series for the Green’s functions
G(F17)= Y explis(p—@y)lg,(r,z17%,,0) has
been substituted by that in Equation 12 since

J_,(tr)J_ (try) = (=)' J (tr)(=)’ J (t1y). The origin
of the co-ordinate system has been located in the
plate center. The acoustic potential amplitude
related to the mode (m, n) is

2na

0, (7, 9,2) = I Ivmn (15, 90)G(r, 0,z 1 1y, 0y, Oy dryd o,
00

€ coss@| ’F [cosme, | [coss@,
=D 0,1 [4. . do,
—on sin sQ sinm@, | |sins@,

0

><J' eiszs (rr)J W, (r)J (T rydr, wdr (14)
Y
0 0

where v, (r, @, 1) = —iw,,, W,, (1 ¢)e m'is
the modal vibration velocity function and ¢ is the
time variable. The sound pressure related to the

mode (m, n) is
Pun (r7 o, Z) = _i(")poq)mn (I", o0, Z)
T — {C.Osm@}f " (M, (02,
sinme | 0
(15)

where p, is the density of light fluid, w is the
circular frequency, and

My, (0= [ W, () J,, (wrg) rg drp. (16)

The radiation sound power related to the mode
(m, n) can be formulated as

2na

1
M =3 [ [ Pon(r.0.0m,,, (r,0)rdrde,  (17)
00

where vfnn (r,o)=iw,,W,, (r.¢) for some time-
harmonic processes. The impedance approach
requires that integrating be performed closely to
the plate surface, i.e., for z = +0. Using Equation
17 and variable exchange T = k sin¥ leads to

mn

ReTl,,, =pyco, k> [ M2, (9)sin 849, (18)
€

m

where k and ¢ are the acoustic wavelength and
sound velocity in fluid, respectively, and
a 9
M, (8)= [ "W, ()], (kr sin 9)rdr = 24 o2 Ym®
(xmn )Jm (M) — umn‘]m (A‘mn )Jm+l (l/t)
1- uﬁm
_ dmn‘]m (I/t) — umnbmn‘]m-H (l/l)
2(1+u2,)

Wmn (\9) - Jm+l

19)

u=r1a, u,, =—,

mn

dmn = m+10"mn) - Cmnlm+l(7"mn)’
b =JyApn) + C o

mn mnlm ml’l) °

The reference sound power related to the mode
(m, n) has been obtained using the facts that

lim p,,,, = pycv,, and ['W,, ()rdr =¢,,a’/2
k—>o0 0

and (cf. Equations 5 and 6):

(0) _ 1 _% 2n pa
;) = lim I1,,, == [ V)

i k—0
V. (r.@)rdrde = %naz W2, (20)

The radiation efficiency related to the mode (m,
n) in its Hankel representation is

IT /2
O = ReHT’:O”) =G|, Won(Psin8a8 1)

where q,,, =22/¢, A, k/k, .

3. LOW FREQUENCY APPROXIMATION

Using Equations 19 and 21 makes it possible to
express radiation efficiency as

Gy = Ao [ O + O + G ], (22)
where
0 =[] L O 0t T Oy M 0 ’
B 1-u,,

sin 9d 9, (23)
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G(Z) — _J‘ /2 Jm+1 O\’mn )‘]m (u)— umn‘lm O\’mn )‘]m+l (u)
o 1—u
. dmn‘]m (u)— umnbmn‘lmﬂ (u) sin9d9 24)

2
1+u,,

2
0(3) — lJ.nlz dmn‘]m () - umnbmn‘lm+l (u)

e 5 sin 9d 9.
Further, the following expansion series have been
used
1 4 8
———=1+2u,, +0(u,,), 26
(A-uy,) (20
1

1—ul, +2u) —2u, +0@),
(27)

(A—u! Y1 +ul,) -

1

— =122 30t —4u® 10 ), (28)
(1 + uin )2 mn mn mn mn

where O (¢) is the approximation error order.
These expansion series are fast convergent
within the integration limits in Equations 23-25.
Inserting them into Equation 22 leads to

4
Gmn = qr%m {Z(k/kmn )2172 |:"allz(4’,’;) + (k/kmn )éllg,r;)

=1

ke, PG [+ 0[ K1k, ) L 20)

where R
Al = [Jm+l (7\’mn) - dmn /2]2 >
1&2 = dmn [Jm+l (}\'mn) - dmn /2]5 (30)
A,=(d,, 12} +24, A, =24,

él = _Z[Jm (}\‘mn) - bmn /2] : [‘]m+l (an) - dmn /2]’
BZ =d,.b _banm+l (}\‘mn)_d J, (xmn )’

mn-—mn mn= m

B,=2B -d,b, /2, B,=2B,, 31)

mn—mn

Cy =[4y Oop) =B 1215 Co =B [ Sy Cur) = B /2],

C,=(b, /12%+2C, C,=2C,. (32

Using the following equations [11]
S, (2, (2)

_ i 1y (ntm+2s)! (z/2)" (33)
= stn+ ! (m+ ) (n+m+s)!
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27y (34
QI+

makes it possible to express the following
integrals as their expansion series

I:/Z(sin 92 a9 =

190 = [ (sin 971 72 ()9

=>(-D
s=0

(35)
s Zl’sm (ka)2m+25
s!Cm+s)!

(m) w2, 21
I =IO (sin9)"J, W)/, ,,wdS (36

0 Vv k 2m+2s+1
— Z(_l)s l,sm( a) ,
e s!2m+s+1)!

where
; for [=
Z, = 2m+2s+1 37)
’ 2m+2s+20-2 for 151
2m+2s+20—1" """ ’
; for =1
V. = 2m+2s+3 (38)
’ M for [>1.
2m+2s+20+1 T

Further, the expansion series have been summed
up introducing no additional error using the
identity [11]

Js,, Qka) = i(—l)S w (39)
o pur s!2m+s)!
which has given
LY =A, L) =A+A,
81" =2A, +3(A, + 4,) 40)

16157 =3(A, + A)) +5(A, + A,),

1yV =B, 1§y =B +B,,
814" =2B, +3(B, + B;) (41)
1615") =3(B, + By) + 5(B, + B,),

where
& 2m+2s
A=Y (-1 (ka)
5=0 s!2m+5)!/(2m+2s+21-1)
2ka
_ 1 I J,,,(x)dx for =0 (42)
C ka | ©

Ty (2ka)+(2m—21+1)B, for [>0,
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< . ka2
B=Y (-1’ (ka)
5=0 s!ICm+s+D!2m+2s+21+1)
1 (43)
= 2_ka[(2m +2[-1A, - J,, (2ka)] for [>0.

2ka
The elementary value of the integral IO J5,, (X)dx
in Equation 42 for / = 0 can be obtained from the
formulas

2ka

.[o x'J,,, (x)dx
(2k 1+1 2ka 1+1 (44)
~(2ka) " 1, (2ka) + [ X, ()

2m—1-1 ’

m+1
I ) (oo _ k)™, ka)
0 2m+1

+2" (kaWrT(m+1/2)[J,,,,(2ka)H,, (2ka) (45)
—J, Qka)H,, (2ka)],

m+1
where [=1,2,3,4,m=0,1,2, .., o, H, is the
mth order Struve function, and T is the Euler
function [11]. Inserting Equations 30-32 and
4041 into Equation 29 gives the low frequency
approximation of the modal radiation efficiency
of the plate.

4. THE TOTAL SOUND POWER

The formulas presented in section 3 for the modal
radiation efficiency can be easily used to obtain
the total sound power radiated by an excited plate.
The following example has been considered.
A hailstone strikes a circular hatchway cover. The
cover is excited for some vibrations and becomes
a sound source. The time-average sound power
radiated depends on the excitation as well as on
the plate material and geometric parameters. The
acoustic and internal damping has been neglected
for simplification. The equation of motion is

(kD_4V4—1)W(r,(p) f( (P)’

(46)

where k= w’phID is the structural wavenumber;
D =Dy (1 —iwn); n=0, is the internal damping
factor; w is the excitation frequency; f(r, ¢) is the
excitation amplitude distribution. The solution
of Equation 46 can be expressed in the form of
double infinite sums of eigenfunctions

W(r,g) = i i[cf,fJW,f;?(r,@ + W 9 ],
m=0 n=1
(47)

where W (r,0) =
W (r,0) =

W, (r)cosme,
W, (r)sinme and

W, (1) = A, [, Kpur) + Cpo L, (k)]

mn mn-m

()

M = o n
mn 4 4 ’
(k,, k) —1
1 2na

pocrmdl | jf(r QW) (r.@)rdrdg,

(48)
f(u)

where p € {c, s}. The intermodal sound power
can be computed on the basis of Equations 15-17
and formulated as

- comno)pqoo

mn,pq

J.ng [ W, (), (xryrdr
0

cosm@, COS s
e, (49
sinm@, sin s@,,

XTqu (r)JS(rr)rerZT
0 0

J- COS PP COSSQ d tdt

X —_—

o Lsin pesinse ® Ji2 =12

Using the integral given after Equation 4 leads to

PO
=Mijn(r)M ) wdt

Em " V k2 - 'Cz '

(50)
Making use of Equations 19 and 20 the total
sound power can be formulated as

= Z Z Z Conn ,mq \j H%)HE:;) cymn,mq ’ (5 1)

m=0n=1 g=1

IT

mn,mq

where the intermodal efficiency related to the
modes (m, n) and (m, q) is

(52)

/2

X [ W (D, ($)sin 949,
0

coefficients g,,, and g,,, have been defined after
Equation 21,

-2 (s) (s) +c(‘) (c)

mn,mq = Cun€ mgq mn mq’

(53)
and the functions ¥,,,, ¥, are given by Equation

19. Using Equations 51, 52 and 48 makes it
possible to calculate the total active sound power

JOSE 2007, Vol. 13, No. 2
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for any asymmetric excitation. The excitation has
been modeled by means the Dirac delta function

3(r —ay)

fr@) = B =———08(0 =), (54)

where F|, is the excitation amplitude, (a,; @,
are the polar co-ordinates of the excitation force
concentration. By employing Equation 48 the
following is obtained:

C(C) — FO Wmn (aO)COS m(\DO ,
npw’ha®  (k,, k)t —1 55)
(s) — E) Wmn (aO)Sinm(PO
npw’ha® (k,, 1ky)* -1

and then inserted into Equation 53.

5. NUMERICAL ANALYSIS

The whole numerical analysis has been performed
for the three different hatchway covers produced
of the three different materials such as polystyrene
(E=3.6 GPa,v=0.24, p=1050 kg/m3), hardened
glass (E =72 GPa, v = 0.24, p = 2900 kg/m") and
steel (£ = 210 GPa, v = 0.3, p = 7850 kg/m3).
While the radius a = 0.3 m and the thickness
h=6+10" m have been assumed to be identical
for all the three hatchway covers. Computing the
total sound power radiated via the modal analysis
requires finding the eigenvalues—the roots of
Equation 11—and computing the modal radiation
efficiency from Equations 21, 29 and 52, first.

5.1. The Modal Radiation Efficiency

While computing the modal radiation efficiency
of mode (m, n), it is worth noticing that this
quantity depends on the quotient of the acoustic
wavenumber k and the structural wavenumber
k., (cf. Equation 29) and it is independent of all
the other geometric and material parameters of
the hatchway cover under consideration. Figure 1
shows as the modal radiation efficiency o,,, grows
as the parameter k/k,, grows and as approaches
values about unity for k/k,,m > 1. The slope of the
corresponding curves is relatively small for the
small m mode number and for any » mode number.
The quantity o,,, approaches values of about 107
for these mode numbers and k/k,, = 107", The
slope grows considerably as m mode number
grows while » mode number stays constant. Figure
1 shows that m mode number influences the slope
of o, curves much stronger than n mode number.
Figure 2 illustrates the absolute approximation
error estimated as

| ~(D (A)
Eestim. - ‘Gmn ~ O | (56)
where o and G(A) are the modal radiation

efficiency computed using Equations 21 and 29,

respectively. The theoretical value of this error is
taken from Equation 29

Elheoret qmn (k/k ) (57)

Figure 2 shows that the estimated error value
decreases rapidly as k/k

n decreases This error

assumes values smaller than 10 for kik,,, < 0.6,

(a) (b)
10’ 10
-5 -5
& 10 10
_
10-10 10-10
10 Wk 10° 10" Kk 10°
Figure 1. The modal radiation efficiency o, for g = 10 and p = 100. Notes. —-—-— (a) mode (1,1),
(b) mode (2,10); — ——— (a) mode (1,9), (b) mode (10,10); (a) mode (1,10), (b) mode (11,10).
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kK,

(b)

107" 10°
Kk,

Figure 2. The absolute approximation error E: the estimated value (thin lines) and the theoretical value

(thick line) for g = 10 and p = 100. Notes. —-—-—

(a) mode (1,1), (b) mode (2,10); — ——— (a) mode (1,9),

(b) mode (10,10); —— (a) mode (1,10), (b) mode (11,10).

for all modes except for a few where it does
not considerably exceed value of for about
kik,, < 0.2. Furthermore, the estimated error in
Equation 56 does not considerably exceed its
theoretical value in Equation 57 for all modes
and for 0 < k/k,, < 1. So, Equation 29 gives
an acceptable approximation for the radiation

10° 102 10*

efficiency related to the mode (m, n) for
kik,,, < 0.6 as well as Equation 57 gives a good
measure for the corresponding approximation
error.

Further, numerical analysis has been performed
using Equation 29 for k/k,,, < 0.6. Figure 3 shows
the radiation o, as a function of the parameters ¢

(b)

10° 102 10*
P

Figure 3. The radiation efficiency o,,, for k/k,,, = 0.4: (a) p=100, n=1; (b) p=10, m=2; (c) q = 10,

n=2;(d)g=100, m=1.

JOSE 2007, Vol. 13, No. 2
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and p for a fixed value of k/k,,,. The parameter g
strongly influences the radiation efficiency within
the range of about g € ( 10°, 10%) depending on the
mode, and weakly outside this range. A decrease in
m mode number results in a rapid decrease in the
value o,,,

also strongly depends on the mode number n (Figure
3b). Figures 3c and 3d show that the parameter p

(Figure 3a). The radiation efficiency o,,,

strongly influences the radiation efficiency within
its range of about p € (10_1, 102) depending on both
mode numbers, and weakly outside this range.

5.2. The Total Sound Power

Using the modal numerical
computations of the total acoustic power of

the excited plate with any damping neglected

analysis  for

requires that the modal radiation efficiency o,,,
Equation 21, the intermodal radiation efficiency
(©)

o and

O mg Equation 52 and the coefficients ¢

cfrfrf are computed first for a given excitation.
The total acoustic power (Equation 51) contains
the triple infinite sum. However, this sum must
be finite for any numerical computations. This
implies that a finite number of modes should be
considered giving the following approximation

M N N
— =2 e
= z zzcmn,mq l_Imn qu Gmn,mq

m=0 n=1 g=1

+O[(k/kyy )1 (58)

where (k/kM]\,)2 is the theoretical approximation
error value. The values M, N have been chosen
in such a way that the following conditions is
satisfied

0 <kppax < knv1. vt (59)

— 'max —

where k.

is the upper bound of the acoustic
wavenumber band. The form of Equation 58
implies that the modenumbers M, N should not
be too high so that the numerical computation
of the triple sum are fast enough. The integrals
Equations 21 and 52 contain the troublesome
singularities and both are time-consuming. This
problem can be overcome by using the fast
convergent series 29 instead of the integral 21 for
the acoustic wavenumbers k < k,,, for the mode

(m, n).
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The numerical calculations of the total active
radiation power have been performed on the basis
of Equation 51 where the magnitudes o,,,, ,, have
been obtained from Equations 29 and 52. The
modal coefficients ¢! and ') dependent on the
material and geometric parameters (mentioned at
the beginning of section 5) have been calculated
by using Equation 55. The target was to choose
the hatchway cover produced of such material
that gives the lowest acoustic power level for
the arbitrarily chosen amplitude F, = 25 na* N,
ap =0.15 m (to assure the asymmetric excitation).

Figure 4 shows the sound power level
Ly = 10log,, (IVI1), (60)

where the sound power is given by Equation 51
and the reference sound power is I, = 1072 W.
The polystyrene plate generates the sound power
level that exceeds 60 dB for ka € (1, 6), i.e.,
f€ (182 Hz, 1.09 Hz) since k = w/c and f = w/2m,
where w is the excitation frequency, c is the sound
velocity in the air). The hardened glass plate is
much more silent within this ka range and the
corresponding sound power level does not exceed
50 dB. The most silent plate of the three samples
is that produced of steel and the corresponding
sound power level does not exceed 40 dB within
the mentioned ka range. Obviously, all the sample
plates generate a considerable sound power level
for their resonance frequencies. However, the
glass and the steel plates have all their resonances
for ka > 8 (i.e., f=1.45 kHz). Figure 5 shows the
modal contribution level defined as

L,, =10log, (G2 s, /1), (61)

where ¢, EE,in,mn (cf. Equation 53), TI%) s
given by Equation 20 and o,, is given by
Equations 21 and 29. The greatest contribution of
the sample mode (m, n) of the polystyrene plate
occurs for k,, be close to kj, i.e., around the
corresponding resonance frequency. It exceeds
50 dB for the mode (0,1) for ka € (1,6) and for
the mode (2,1) for ka € (2.5,10). This shows that
the lowest modes of the sample plate generate
some considerable acoustic power levels, and that
the polystyrene plate is the most disadvantageous
sample of the three sample plates. For given
excitation and the geometric parameters it
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L. (dB)

0 25 5 7.5 10
ka
Figure 4. The total sound power level Ly for some sample hatchway covers. Notes. ——— polystyrene,
————— glass, steel.
i
)
\ 7
'/
7/
3
= A
< ..
5 7.5 10
ka
Figure 5. The modal contribution to the total sound power level. Notes. —— — contribution of the mode (0,1),

————— contribution of the mode (2,1), total sound power level.

is necessary to choose a proper material for
a hatchway cover to make it acceptably silent.

6. CONCLUDING REMARKS

The low frequency noise of a flat circular plate
has been examined using modal analysis. For
this purpose, the radiation efficiency of an
elastically supported circular plate related to
the mode (m, n) has been approximated for the
normalized acoustic wavenumber k/k,, < 0.6.
It has been presented using some developed
recurrence formulas. It is a generalization of
some earlier published results. First of all, one
formula represents the radiation efficiency for

the boundary conditions of a clamped circular
plate presented earlier [9] as well as for any
axisymmetric boundary configuration. Second,
results presented earlier [9] were valid for
axisymmetric modes only whereas approximation
presented herein is valid for both axisymmetric
and asymmetric modes.

Equation 29 makes it possible to obtain
modal radiation efficiency in a very convenient
way avoiding troublesome singularities and
integration. Moreover this expression includes
only elementary functions, which makes it useful
for numerical calculations.

The numerical calculations presented herein
have been performed for three different hatchway
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covers of identical geometric sizes but produced
of three different materials. It has been shown
that a circular plate excited asymmetrically by a
low frequency concentrated force can generate
some considerable sound power levels depending
strongly on the plate material parameters. This
analysis has made it possible to choose a cover
that has the smallest radiation efficiency for a
point excitation. However, the formulas presented
in this paper can be used to perform a similar
numerical analysis for any thin circular plate
with any axisymmetric boundary conditions for
harmonic excitations.
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APPENDIX
Developing an Elementary Formula

Equation 21 contains the function ¥,,,(0) of an elementary form given in Equation 19. This function has
been developed using [11]

[ 7. €, (C)zdz = ﬁ[@a (62),1(82) = I, (2, ()] (A1)

The following substitutions z = r|g , &=k,,, {=ksin3 and v=m, and denotations from Equation 19

lead to
a . az
IO Jm (kmnr)‘]m (kl’ sm S)Fdl" = v—z[kanmH O“mn )Jm (”) - qu (}\'mn )Jm+1 (u)] (A2)

Substituting, z = r|g , £=ik,, , {=ksin9 andv=m, and using I,(z) = exp(-ivr/2) I ,(z exp(ivr/2)) for
—m<argz<m/2[11]lead to I,, (x) = (=i)" J,, (ix) for x € R and give

a 2
[ 1, G, o sim 8y = }hz“ﬁ[xmn%1 oy ) (@) +ul, (h, )T, (). (A3)
0

Equations 2 and 19 imply that

M,,(9)=] OWm (r)J,, (krsin Q)rdr "

=4, [ [, G sin 8)rdr + C,,, [T, ()], Gk sin S)rdr]

Substituting Equations A2 and A3 into A4 and rearranging the result using denotations from Equation 16
result in the functions M,,,(0) and and ¢,,,,,(0) as the elementary formulas presented in Equation 19.
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